Ambient Air Quality Monitoring Opportunity and Warm Springs Sites Second Quarter of 2009

Prepared for

Anaconda Deer Lodge County

August 2010

Kuipers & Associates 118 East 7th Street, Room 3H Anaconda, Montana 59711 (406) 563-7476

Table of Contents

<u>1.0</u>	INTRODUCTION	1
2.0	PM10 AND TSP DATA SUMMARY	
2.1	Opportunity Site	3
2.2	Warm Springs Site	4
<u>3.0</u>	COLLOCATED PARTICULATE MONITORING RESULTS COMPARISON	5
4.0	DUST MONITORING RESULTS	8
5.0	METEOROLOGICAL DATA SUMMARY	10
5.1	Opportunity Site	10
<u>5.2</u>	Warm Springs Site	12
5.3	Meteorological Conditions and Particulate Concentrations	14
<u>6.0</u>	DATA QUALITY SUMMARY	16
6.1	Summary of Performance Check / Maintenance Activities	16
6.2	Data Quality Issues	17
<u>7.0</u>	AIR QUALITY SYSTEM NULL DATA QUALIFIER CODES	20
8.0	REFERENCES	24

APPENDICES

APPENDIX A - MONTHLY DATA SUMMARIES

APPENDIX B – DUST SAMPLE MEMORANDA

APPENDIX C - E-BAM PERFORMANCE CHECK / MAINTENANCE PROCEDURES

APPENDIX D – E-BAM PERFORMANCE CHECK RESULTS

APPENDIX E – AIR QUALITY SYSTEM NULL DATA QUALIFIER CODES

ATTACHMENTS

ATTACHMENT 1 – LABORATORY ANALYTICAL REPORTS

1.0 INTRODUCTION

This quarterly report documents the ambient air quality monitoring program conducted by Kuipers & Associates on behalf of Anaconda Deer Lodge County at Opportunity and Warm Springs locations adjacent to the Atlantic Richfield Lower Waste Management Area. The months of April through June 2009 are included in this quarterly report, with a more detailed data summary in the monthly reports.

Objectives of this quarterly report include the following:

- Summarize the PM10 and Total Suspended Particulate (TSP) data on a quarterly basis and compare to applicable standards.
- Compare daily average TSP values recorded by the Opportunity Site against the PM10 values reported by the Atlantic Richfield Company's South Site.
- Present summarized meteorological data for the quarter.
- Present summarized results for ambient dust sampling conducted during the quarter.
- Present the Data Quality Summary (PM10, TSP and meteorological).
 - Review the hourly data according to the Environmental Protection Agency's Air Quality System Null Data Qualifier Codes.
 - o Format hourly PM10 and TSP data for each month to fit the Environmental Protection Agency's Air Quality System raw data template.

Figure 1 shows the ADLC monitoring locations in Opportunity and Warm Springs, and the Atlantic Richfield Company's South Site monitoring location.

Ambient Air Quality Monitoring Opportunity and Warm Springs Sites Second Quarter of 2009

2.0 PM10 AND TSP DATA SUMMARY

The Met One E-BAM portable PM10 monitor at Warm Springs and the TSP monitor at Opportunity collected continuous hourly data at both locations from April 1 through June 30.

During the period of operation, data recovery was 96.1% at Opportunity and 95.4% at Warm Springs. Detailed ambient air quality monitoring results for the second quarter of 2009 are summarized in the April, May and June monthly reports prepared by Kuipers & Associates. A general discussion of ambient air quality monitoring data from the second quarter of 2009 is provided in the following sections. All PM10 and TSP data are reported at Local temperature and pressure (LTP) conditions.

2.1 Opportunity Site

At the Opportunity location daily average TSP concentrations ranged from 1 to 103 $\mu g/m^3$ with an average of 15 $\mu g/m^3$ throughout the second quarter. The maximum daily average TSP reading of 103 $\mu g/m^3$ was observed on May 19, in conjunction with strong southwest winds that shifted to the north-northeast. The corresponding daily average PM10 concentration reported by the adjacent ARCO South sampler was 15 $\mu g/m^3$. This indicates that most of the airborne dust was larger than 10 microns in diameter, which is consistent with the high wind speeds. There is considerable hourly variability on many days; on average the maximum daily one-hour concentration was 45 $\mu g/m^3$ in April, 78 $\mu g/m^3$ in May and 75 $\mu g/m^3$ in June. Daily average TSP concentrations for the quarter are presented in Figure 2 for the Opportunity monitoring site, and also in Appendix A.

Currently, there is no ambient air quality standard for TSP. However, all daily average TSP results for the second quarter of 2009 at Opportunity were well below the historical 24-hour Montana Ambient Air Quality Standard of 200 $\mu g/m^3$.

No Opportunity TSP data from the second quarter was rejected or omitted for quality assurance or quality control check results. Minor data losses occurred due to maintenance activities and power outages. Additionally, a total of 74 hours of TSP data were excluded in May because a method detection limit (MDL) test was in progress.

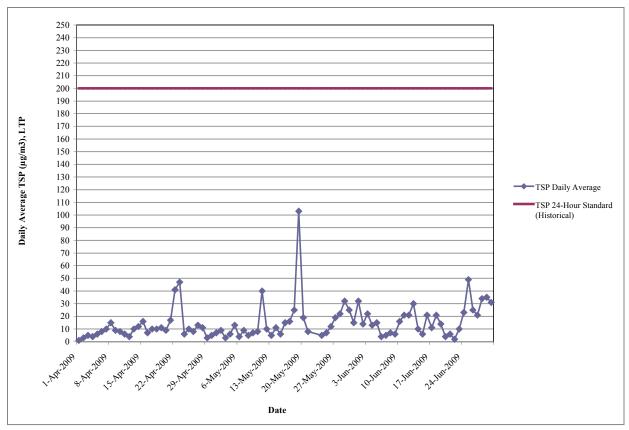


FIGURE 2- OPPORTUNITY SITE DAILY AVERAGE TSP CONCENTRATION

2.2 Warm Springs Site

At the Warm Springs location daily average PM10 concentrations ranged from non-detect to $20~\mu g/m^3$ with a quarterly average of $5~\mu g/m^3$. The maximum daily average PM10 reading of $20~\mu g/m^3$ was observed on May 19, the same date that the highest 24-hour average TSP level was observed at Opportunity. The highest hourly concentrations on May 19 were accompanied by strong south to southwest winds. There is considerable hourly variability on many days; on average the maximum daily one-hour concentration was $19~\mu g/m^3$ in April, $25~\mu g/m^3$ in May and $32~\mu g/m^3$ in June. Daily PM10 average concentrations for the second quarter are presented in Figure 3 for the Warm Springs monitoring site, and also in Appendix A.

All daily average PM10 results for the second quarter of 2009 at Warm Springs were well below the 24-hour Montana Ambient Air Quality Standard of 150 μ g/m³. No Warm Springs PM10 data from the second quarter was rejected or omitted for quality assurance or quality control reasons. Minor data losses occurred due to maintenance activities and power outages. Additionally, a total of 74 hours of PM10 data were excluded in May because an MDL (method detection limit) test was in progress.

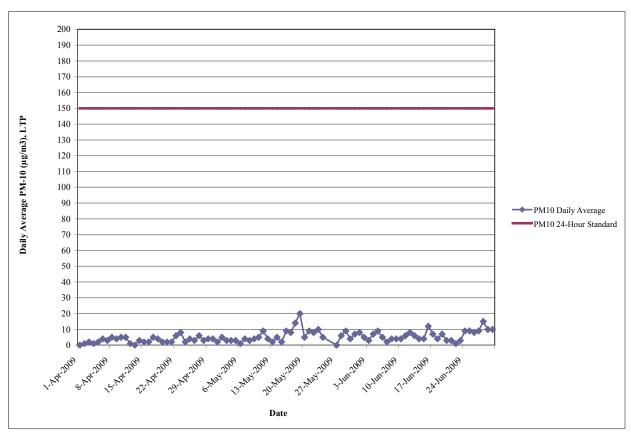


FIGURE 3 - WARM SPRINGS SITE DAILY AVERAGE PM10 CONCENTRATION

3.0 COLLOCATED PARTICULATE MONITORING RESULTS COMPARISON

Daily average (24-hour) results from the ADLC E-BAM TSP monitor at the Opportunity site were compared to the Atlantic Richfield Wedding PM10 monitors at the South Site for the quarter. The ADLC monitor collects screening level data, while the Atlantic Richfield monitors follow a federal reference method (FRM) required for compliance with air quality standards. While these are different measurements, collocated PM10 data collected at Opportunity from May 2007 through June 2008 indicated good general agreement between the E-BAM and Wedding PM10 monitoring systems. Therefore, a comparison of the E-BAM TSP data versus Wedding PM10 data should provide an indication of the ratio of total airborne particulate to the inhalable fraction (PM10).

The individual collocated results are listed in Table 1, and depicted graphically in Figure 4. While the ratio shows high day-to-day variability –particularly at lower concentrations – on average the total amount of airborne particulate (TSP) was nearly quadruple the amount of inhalable particulate (PM10). This relationship is fairly consistent whether one calculates the average of the daily TSP/PM10 ratios (3.92), or a total mass ratio (3.70). This is higher than the ratios observed during previous quarters, which were typically between 2:1 and 3:1. The diagonal line on Figure 4 represents a best-fit linear regression of TSP against daily average PM10 values.

TABLE 1 – COLLOCATED RESULTS FOR TSP VS. PM10 DAILY AVERAGE VALUES SECOND QUARTER 2009

(All values are $\mu g/m^3$ at Local temperature and pressure (LTP))

Date	Standard ARCO - PM-10 Wedding FRM South Site	Test ADLC - TSP Met One E-BAM Opportunity Site	TSP as Percent of PM-10	TSP as Percent of PM-10 Cumulative
April 1, 2009	0	1	N/A	N/A
April 4, 2009	1	4	400	500
April 7, 2009	2	10	500	500
April 10, 2009	2	8	400	460
April 13, 2009	1	10	1000	550
April 16, 2009	1	7	700	571
April 19, 2009	1	11	1100	638
April 25, 2009	4	10	250	508
April 28, 2009	0	11	N/A	600
May 1, 2009	3	7	233	527
May 4, 2009	2	6	300	500
May 7, 2009	2	9	450	495
May 10, 2009	5	8	160	425
May 13, 2009	1	5	500	428
May 16, 2009	6	15	250	394
May 19, 2009	15	103	687	489
May 25, 2009	4	7	175	464
May 28, 2009	7	22	314	446
May 31, 2009	6	15	250	427
June 3, 2009	7	22	314	416
June 6, 2009	4	4	100	399
June 12, 2009	7	21	300	390
June 15, 2009	4	6	150	379
June 18, 2009	6	21	350	377
June 21, 2009	4	6	150	367
June 24, 2009	6	23	383	368
June 30, 2009	8	31	388	370

Mean	392
Maximum	1100
Minimum	100

TSP vs. PM10 Collocated Results Quarter 2, 2009

(line is best-fit regression of TSP on PM10)

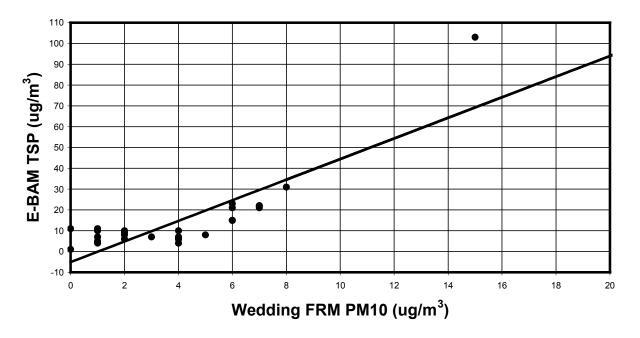


FIGURE 4 – COLLOCATED RESULTS COMPARISON FOR ADLC OPPORTUNITY E-BAM (TSP) AND ATLANTIC RICHFIELD WEDDING FRM (PM10)

4.0 DUST MONITORING RESULTS

Starting August 15, 2008, clean 9-inch diameter glass dishes were set out at both sites at a height of approximately 7 feet to capture and retain settling dust. A personal sampling pump supplied by SKC, Inc. was used to vacuum any settled dust from the dishes during twice-weekly site visits. Vacuuming could not be performed when standing water was present. In those instances, the water was allowed to evaporate, and vacuuming was performed at the next opportunity.

The vacuumed dust was collected onto 37-mm diameter, matched weight mixed cellulose ester (MCE) filter cassettes and submitted for analysis. The samples were analyzed for arsenic, cadmium, copper, lead and zinc, as well as total dust weight.

Settled dust samples were collected at both sites during the second quarter of 2009. Results are summarized in Table 2. A memorandum discussing the collection and analysis of the dust samples is presented in Appendix B, including any data quality concerns. The laboratory analysis report is presented in Attachment 1.

Additional sampling using dustfall jars was implemented in October 2008, but initial results were not reported because of laboratory weighing resolution issues. However, results for samples collected ending April 6, 2009 and June 1, 2009 are summarized in Table 2. A memorandum discussing the collection and analysis of the dust samples is presented in Appendix B, including any data quality concerns. The laboratory analysis report is presented in Attachment 1.

Selected exposed filters from the ARCO South samplers at Opportunity are analyzed for arsenic and lead concentrations, in addition to PM10. Average concentrations of arsenic and lead for the ARCO samples were calculated for the first two quarters of calendar year 2009 on a total mass basis, with a result of 167 mg/kg for arsenic and 266 mg/kg for lead. Although the sampling methods are much different, and the ARCO samplers collect only PM10 (rather than total particulate), the arsenic concentrations found in the Opportunity glass dish dust samples and dustfall samples are of similar magnitude to that calculated for the ARCO air samples. The lead concentrations found in the Opportunity samples appear to be somewhat lower than the corresponding ARCO result, but are still of the same order of magnitude.

TABLE 2 – SUMMARY OF DUST MONITORING RESULTS

Site / Sample Type	Collection Period	As (mg/kg)	Cd (mg/kg)	Cu (mg/kg)	Pb (mg/kg)	Zn (mg/kg)	Net Weight (mg)
Opportunity Settled Dust	03/02/09 to 06/01/09	162	5.03	562	144	631	35.5
Opportunity Settled Dust	06/01/09 to 07/10/09	153	4.40	483	125	473	12.0
Opportunity Dustfall	03/02/09 to 04/05/09	122	10.6	372	31.7	2428	5.4
Opportunity Dustfall	04/05/09 to 06/01/09	148	5.60	458	101	713	41.5
Warm Springs Settled Dust	03/02/09 to 06/01/09	74.7	5.87	382	129	629	9.3
Warm Springs Settled Dust	06/01/09 to 07/10/09	29.5	15.8	211	92.6	367	1.6
Warm Springs Dustfall	03/02/09 to 04/05/09	140	28.3	597	49.7	3248	3.5
Warm Springs Dustfall	04/05/09 to 06/01/09	83.3	8.44	312	88.1	689	21.5

5.0 METEOROLOGICAL DATA SUMMARY

Meteorological data were collected continuously and recorded hourly at both the Opportunity and Warm Springs E-BAM monitoring sites. Parameters monitored include wind direction, wind speed, temperature and relative humidity. The data were collected at a height of approximately 8 feet above ground level.

Summarized meteorological data for these sites are presented and discussed in Sections 5.1 and 5.2. Detailed daily meteorological summaries are presented in Appendix A; information presented includes:

- Average, maximum and minimum air (shade) temperature for each day,
- Average and maximum hourly average wind speed for each day,
- Resultant wind direction for each day (weighted by wind speed this is the mean direction from which the wind was blowing), and
- Average daily relative humidity.

Additionally, the summaries in Appendix A show the average daily and maximum daily PM10 and TSP concentrations, to facilitate correlation with the meteorological data. Section 5.3 presents wind rose summaries for periods with elevated PM10 and TSP concentrations.

5.1 Opportunity Site

Figure 5 summarizes the meteorological data for the Opportunity site. Winds were generally light, averaging 2.3 m/s (5.1 mph). The highest recorded hourly wind speed was 8.5 m/s (19.0 mph); it is likely that higher short-term gusts have occurred, but the system only monitors hourly average wind speed. Temperatures were below normal in April and June, and near normal in May. Monthly averages were 3.4°C (38.1°F) in April, 9.8°C (49.6°F) in May and 12.3°C (54.1°F) in June. Temperature extremes ranged from a low of –9.0°C (15.8°F) in April to a high of 28.6°C (83.5°F) in May. The average humidity for the quarter was 58%, with considerable daily variation.

Winds at the Opportunity site were mostly from the southwest quadrant, though northerly and north-northeasterly winds also were very common. The strongest winds tended to be from the west through southwest, and from the north and north-northeast.

Minor meteorological data losses occurred due to routine maintenance and short power outages, but none occurred due to data quality issues. Additionally, minor wind data losses occurred in April because of instrument icing during snow events.

Part 1 – Means and Extremes

Parameter	April	May	June	Quarter	
Average Wind Speed, m/s	2.6	2.3	1.9	2.3	
Maximum (hourly) Wind Speed, m/s	8.5	8.0	5.4	8.5	
Average Temperature, °C	3.4	9.8	12.3	8.5	
Maximum Temperature, °C	22.6	28.6	28.3	28.6	
Minimum Temperature, °C	-9.0	-4.7	-0.6	-9.0	
Average Relative Humidity, % 60 53 61 58					
Refer to Appendix A for detailed dail	lv meteorolog	ical summaries	·.	1	

Part 2 – Quarter 2, 2009 Wind Rose

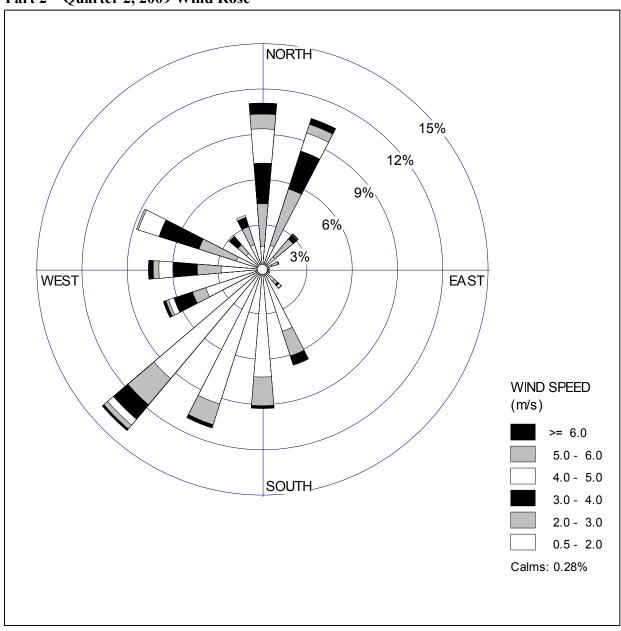


FIGURE 5 – METEOROLOGICAL SUMMARY FOR OPPORTUNITY SITE

5.2 Warm Springs Site

Figure 6 summarizes the meteorological data for the Warm Springs site. Winds were generally light, averaging 2.0 m/s (4.5 mph). The highest recorded hourly wind speed was 8.4 m/s (18.8 mph); it is likely that higher short-term gusts have occurred, but the system only monitors hourly average wind speed. Temperatures were below normal in April and June, and near normal in May. Monthly averages were 3.2°C (37.8°F) in April, 9.8°C (49.6°F) in May and 12.8°C (55.0°F) in June. Temperature extremes ranged from a low of –9.1°C (15.6°F) in April to a high of 28.5°C (83.3°F) in June. The average humidity for the quarter was 58%, with considerable daily variation.

Winds at the Warm Springs site were mostly from southerly directions, though northerly winds also were common. Westerly winds, while occurring less frequently, were often the strongest.

Minor meteorological data losses occurred due to routine maintenance and short power outages, but none occurred due to data quality issues. Minor wind data losses occurred in April because of instrument icing during snow events. Additionally, some relative humidity data were invalidated during June because of a faulty signal cable connection.

Part 1 – Means and Extremes

Parameter	April	May	June	Quarter
Average Wind Speed, m/s	2.2	2.3	1.6	2.0
Maximum (hourly) Wind Speed, m/s	6.2	8.4	5.3	8.4
Average Temperature, °C	3.2	9.8	12.8	8.6
Maximum Temperature, °C	22.5	28.1	28.5	28.5
Minimum Temperature, °C	-9.1	-4.0	0.2	-9.1
Average Relative Humidity, % 60 53 62 58				
Refer to Appendix A for detailed dail	v meteorolog	ical summaries		

Part 2 – Quarter 2, 2009 Wind Rose

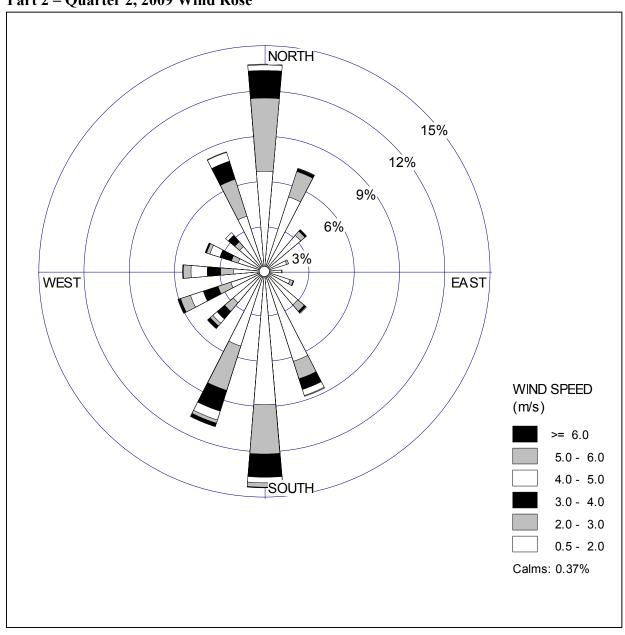


FIGURE 6 – METEOROLOGICAL SUMMARY FOR WARM SPRINGS SITE

5.3 Meteorological Conditions and Particulate Concentrations

Additional wind roses were generated for both monitoring sites to depict wind patterns during periods of elevated particulate concentrations – with the Opportunity site shown in Figure 7 and the Warm Springs site shown in Figure 8. For this analysis, "elevated" was defined as TSP concentrations greater than or equal to $45 \, \mu g/m^3$ at Opportunity, and PM10 concentrations of greater than or equal to $20 \, \mu g/m^3$ at Warm Springs. These thresholds – corresponding to roughly the 95^{th} percentile at both sites— were used to ensure that a sufficient volume of data was incorporated to produce meaningful wind rose results.

When comparing the wind roses for the Opportunity site (Figures 5 and 7), it is evident that wind speeds were often higher during elevated TSP conditions. This is reasonable, since the larger – and therefore heavier – particulates collected by a TSP monitor would require greater wind activity to be entrained into the air. The wind direction distribution during elevated TSP periods was also notably different from the overall pattern, with northerly and especially north-northeast winds being more pronounced than at other times.

The corresponding wind roses for the Warm Springs site (Figures 6 and 8) show that winds were often stronger during elevated PM10 periods. However, the distribution of wind directions did not differ greatly from the overall pattern seen in Figure 6.

These results suggest that TSP levels at Opportunity are influenced by the Opportunity tailings area during strong north and northeast winds, and that elevated PM10 levels at Warm Springs are associated with higher wind speeds, but not necessarily winds from the tailings area.

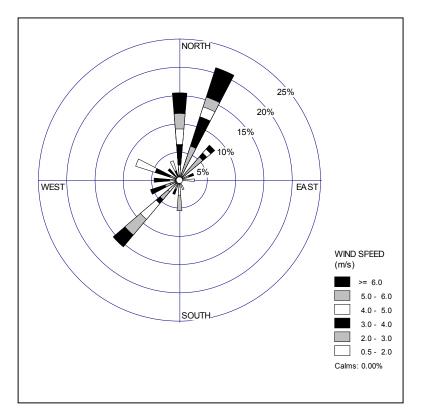


FIGURE 7 – OPPORTUNITY WIND ROSE FOR ELEVATED TSP PERIODS

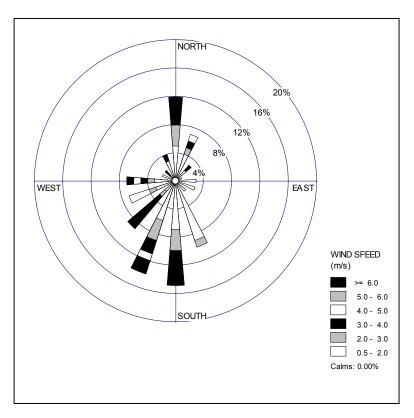


FIGURE 8 – WARM SPRINGS WIND ROSE FOR ELEVATED PM10 PERIODS

6.0 DATA QUALITY SUMMARY

Data quality is an integral part of any ambient monitoring program. The data collected must be of a known quality to be used for evaluation of local air quality and meteorological characteristics. This is particularly important when an objective of a monitoring program is to identify possible emission sources, and meteorological events associated with certain ambient air quality conditions – in this case elevated PM10 or TSP levels.

The Opportunity and Warm Springs monitoring systems were checked and/or calibrated (as appropriate for each monitoring parameter) monthly during the second quarter of 2009. This was accomplished via performance checks using standards that were either:

- Traceable to NIST; or
- Otherwise certified by the test equipment manufacturer.

Each instrument response was recorded, and evaluated to determine whether it fell within its respective acceptance range. In the event that a response fell outside (or near the limits of) the applicable acceptance range, the monitor or sensor in question was adjusted or recalibrated as appropriate. Such results then must be evaluated, in conjunction with a detailed data review, to identify data periods that must be flagged or invalidated.

Minor sampler maintenance was also performed on a monthly basis. Additionally, data were reviewed frequently via satellite link, and inspected for any suspicious behavior requiring investigation.

6.1 Summary of Performance Check / Maintenance Activities

Performance checks and minor maintenance were conducted on a monthly basis. Table 3 summarizes checks and maintenance for the E-BAM sampler itself, while Table 4 lists the meteorological checks. Information presented includes:

- The instrument model and serial number for each component of the monitoring system;
- Each type of check/maintenance performed on that component;
- Performance acceptance ranges; and
- A description of the calibration standard (and its traceability) used to perform each check.

Additionally, an MDL (method detection limit) test was conducted for both E-BAM samplers during May. For the Opportunity sampler, the 24-hour MDL was calculated at 1.8 μ g/m³, and the one-hour MDL at 9.0 μ g/m³. For the Warm Springs sampler, the 24-hour MDL was calculated at 2.5 μ g/m³, and the one-hour MDL at 12.2 μ g/m³. The manufacturer states a one-hour MDL of 6 μ g/m³; therefore a second MDL test will be conducted during the latter part of 2009.

6.2 Data Quality Issues

In general, performance checks and maintenance activities conducted throughout the second quarter of 2009 indicted that the E-BAM samplers were meeting performance objectives. The performance check procedures and routine maintenance activities are discussed in detail in Appendix C. Results for the second quarter of 2009 are presented in Appendix D. All E-BAM sampler test results obtained during the second quarter of 2009 were satisfactory.

Causes of data losses during the second quarter included the following:

- A total of 74 hours of TSP data at Opportunity, and 74 hours of PM10 data at Warm Springs, were excluded from analysis because an MDL test was being conducted.
- A total of 13 hours of PM10 data at Warm Springs were lost due to a sampler flow failure.
- A total of 15 hours of wind data at Opportunity, and 31 hours at Warm Springs, were invalidated because of suspected icing of the wind instruments.
- A total of 55 hours of relative humidity data at Warm Springs were invalidated because of a faulty cable connection
- A total of 5 hours of data were lost at Warm Springs due to power outages.
- Additional minor data losses occurred at both sites due to routine maintenance.

TABLE 3 – SUMMARY OF PERFORMANCE CHECKS E-BAM SAMPLER

Met One E-BAM PM₁₀ and TSP Samplers

		Serial N	No.	Check Description			
Instrument	Model	OPP	WS	Check Description	Acceptance Range	Check/Cal. Standard	Traceability
Particulate	E-BAM	F7290	F7289	Leak Check	<1.5 LPM	BX-302	N/A
Sampler		(TSP)	(PM_{10})			valve	
				Operating	+/- 2%	Delta Cal	MFR/NIST
				Flow	(+/- 0.33	S/N 000498	
					LPM)		
				Pump Test	(1)	BX-302	N/A
						valve	
				Zero/Span	Pass / Fail	Membrane	MFR
						Plates	
				Clean Vane &	(2)	N/A	N/A
				Nozzle			
				Clean PM10	N/A	N/A	N/A
				Head			
Barometer	E-BAM	F7290	F7289	Collocated	+/- 2 mmHg	Aneroid	Mercury
(3)	E-DAM	1.7290	11/209	Conocated	1/- 2 mming	Barometer	Barometer

Explanatory Notes for Table 3

N/A = Not applicable

MFR/NIST = Certified traceable to NIST by the manufacturer

MFR = Certified accurate per Met One's E-BAM-6100 Final Test Procedure

- (1) Acceptance range varies with test flow rate, see Appendix C for discussion.
- (2) Leak check performed following cleaning, result must be <1.5 LPM.
- (3) Barometer is internal to E-BAM sampler.

TABLE 4 – SUMMARY OF PERFORMANCE CHECKS METEOROLOGICAL INSTRUMENTS

Met One Meteorological Instruments

Instrument		Serial I	No.	Check Description			
(1)	Model	OPP	WS	Check Description	Acceptance Range	Check/Cal. Standard	Traceability
Temperature	9250	F9487	F9481	Collocated	+/- 0.5 °C	Assmann Psychrometer	NIST
Relative Humidity	593	F9346	F9349	Collocated	+/- 5% Relative Humidity	Assmann Psychrometer	NIST
Wind Speed	0348	G2181	G2187	Collocated	+/- 0.5 m/s	Met One 010 Sensor	NIST
		U2181	G2187	Rotation Check	+/- 0.2 m/s	Synchronous Motor	MFR
Wind Direction	0348			Initial Alignment	+/- 2 degrees	Solar Sighting	NIST Time
		G2181	G2187	Linearity	+/- 3 degrees	Visual Crossarm Alignment (2)	N/A

Explanatory Notes for Table 4

- (1) All meteorological instruments include certificate of NIST traceability from Met One, valid for a period of one year.
- (2) Linearity checked by visually aligning wind vane in 90-degree increments with respect to crossarm.

MFR = Motor rotation rate provided by manufacturer.

7.0 AIR QUALITY SYSTEM NULL DATA QUALIFIER CODES

Invalid hours for the quarter are summarized in Table 5 for the Opportunity site, and Table 6 for the Warm Springs site. The complete PM10 and TSP data sets for the quarter, and current qualifier codes are presented in Appendix E.

TABLE 5 – OPPORTUNITY SITE INVALID DATA PERIODS QUARTER 2, 2009

Part A - TSP

Date	Invalid Hours	Invalid Hours	Reason	Data Invalidation
	(ending at) MST	GMT		Code
4-1-2009	1600	2300	Tape change	BA
4-5-2009	1600	2300	Monthly checks	BA
5-1-2009	1300	2000	Tape change	BA
5-4-2009	1700		Spurious reading	AM
5-5-2009		0000	Spurious reading	AM
5-21-2009	1300-2300	2000-2300	MDL check	BA
5-22-2009	0000-2300	0000-2300	MDL check	BA
5-23-2009	0000-2300	0000-2300	MDL check	BA
5-24-2009	0000-1400	0000-2100	MDL check	BA
5-27-2009	1700		Monthly check	BA
5-28-2009		0000	Monthly check	BA
6-1-2009	1000-1200	1700-1900	Remove tape,	BA
			troubleshooting	
6-5-2009	1200	1900	Check downtube	BA
6-12-2009	1300	2000	Check downtube	BA
6-22-2009	1300	2000	Check downtube	BA

Part B – Wind Direction / Wind Speed

Ture B Wind Briceton / Wind Speed								
Date	Invalid Hours	Invalid Hours	Reason	Data Invalidation				
	(ending at) MST	GMT		Code				
4-14-2009	0200-0800	0900-1500	Instrument icing	AO				
4-23-2009	1900-2300		Instrument icing	AO				
4-24-2009	0000-0200	0200-0900	Instrument icing	AO				
4-27-2009	1600	2300	Monthly check	BA				
5-27-2009	1300	2000	Monthly check	BA				
6-1-2009	1000-1200	1700-1900	Troubleshooting	BA				

Part C – Temperature / Relative Humidity

Date	Invalid Hours (ending at) MST	Invalid Hours GMT	Reason	Data Invalidation Code
6-1-2009	1000-1200	1700-1900	Troubleshooting	BA

TABLE 6 – WARM SPRINGS SITE INVALID DATA PERIODS QUARTER 2, 2009

Part A – PM10

Date	Invalid Hours	Invalid Hours	Reason	Data Invalidation
	(ending at) MST	GMT		Code
4-1-2009	1500	2200	Tape change	BA
4-1-2009	1800, 1900		Power outage	AV
4-2-2009		0100, 0200	Power outage	AV
4-5-2009	1400	2100	Monthly check	BA
4-10-2009	2000-2200		Power outage	AV
4-11-2009		0300-0500	Power outage	AV
5-1-2009	1200	1900	Tape change	BA
5-24-2009	1400-2300	2100-2300	MDL check	BA
5-25-2009	0000-2300	0000-2300	MDL check	BA
5-26-2009	0000-2300	0000-2300	MDL check	BA
5-27-2009	0000-1500	0000-2200	MDL check	BA
5-27-2009	1600	2300	Monthly check	BA
5-29-2009	1500	2200	Clean down-tube	BA
			base	
6-1-2009	1300	2000	Remove tape,	BA
			check downtube	
6-5-2009	1100	1800	Check downtube	BA
6-12-2009	1200	1900	Check downtube	BA
6-15-2009	2300		Flow fail	AH
6-16-2009	0000-1100	0600-1800	Flow fail	AH
6-22-2009	1300	2000	Check downtube	BA

Part B – Wind Direction / Wind Speed

Date	Invalid Hours	Invalid Hours	Reason	Data Invalidation
	(ending at) MST	GMT		Code
4-1-2009	1800, 1900		Power outage	AV
4-2-2009		0100, 0200	Power outage	AV
4-2-2009	2300		Instrument icing	AO
4-3-2009	0000-0800	0600-1500	Instrument icing	AO
4-10-2009	2000-2200		Power outage	AV
4-11-2009		0300-0500	Power outage	AV
4-14-2009	0300-0700	1000-1400	Instrument icing	AO
4-23-2009	1700-2300		Instrument icing	AO
4-24-2009	0000-0800	0000-1500	Instrument icing	AO
4-27-2009	1600	2300	Monthly check	BA
5-27-2009	1600	2300	Monthly check	BA

Part C – Temperature / Relative Humidity

Date	Invalid Hours	Invalid Hours	Reason	Data Invalidation
	(ending at) MST	GMT		Code
4-1-2009	1800, 1900		Power outage	AV
4-2-2009		0100, 0200	Power outage	AV
4-10-2009	2000-2200		Power outage	AV
4-11-2009		0300-0500	Power outage	AV
6-26-2009	0000-0700	0700-1400	Loose cable	AM (1)
6-27-2009	0100-0700,	0800-1400	Loose cable	AM (1)
	2100-2300			
6-28-2009	0000-2300	0400-2300	Loose cable	AM (1)
6-29-2009	0000-1200	0000-1900	Loose cable	AM (1)
(1) Relative h	umidity data only	I		1 /

8.0 REFERENCES

Atlantic Richfield Company, August 2009. Anaconda Smelter National Priorities List Site: Opportunity Ponds Remedial Design Unit 8 Ambient Air Monitoring Program. Particulate, Lead and Arsenic Summary Data Report through June, 2009. Prepared by TREC, Inc.

EPA. August 1998. EPA Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Part 1, Ambient Air Quality Monitoring Program Quality System Development. EPA-45a/R-98-004.

Kuipers & Associates, June 2007. Sampling and Analysis Plan: Ambient Air Quality. Particulate Matter, PM-10 and PM-2.5 Opportunity Ponds Area.

Kuipers & Associates, May 2007 through June 2009. Monthly and Quarterly Ambient Air Quality Reports for the Opportunity and Warm Springs Sites. Available for viewing online at:

http://anacondadeerlodge.mt.gov/super/info.aspx#q_reports.

Met One, Inc., 2008. E-BAM Particulate Monitor Operation Manual: E-BAM-9800, Revision L.

APPENDIX A

MONTHLY DATA SUMMARIES SECOND QUARTER 2009

OPPORTUNITY DAILY DATA SUMMARY - APRIL 2009

Day	(a) Average Concentration (ug/m3)	(a) Maximum Concentration (ug/m3)	Average Wind Speed (m/s)	Maximum Wind Speed (m/s)	Resultant Wind Direction (degrees) (b)	Average Temperature (deg C)	Maximum Temperature (deg C)	Minnimum Temperature (deg C)	Average Relative Humidity (percent)
1	1	11	2.4	4.1	271	-1.4	1.8	-5.8	60
2	3	24	2.4	4.3	228	0.0	4.4	-4.1	71
3	5	20	2.8	6.3	7	-1.6	2.9	-7.2	72
4	4	24	3.2	4.7	9	-0.8	3.5	-6.7	64
5	6	25	1.6	3.5	163	-0.6	8.4	-9.0	58
6	8	23	2.0	3.8	182	4.6	14.5	-3.6	50
7	10	38	1.9	3.7	204	6.8	17.0	-1.9	48
8	15	40	2.4	5.3	228	8.6	15.7	3.0	50
9	9	23	2.1	4.1	17	3.9	7.2	-1.2	77
10	8	24	1.5	5.1	213	4.8	11.8	-1.3	68
11	6	16	2.2	4.5	270	6.1	13.0	-0.3	65
12	4	19	2.1	3.2	244	7.1	13.7	0.3	46
13	10	39	3.0	6.2	330	3.9	8.7	0.4	71
14	12	40	3.2	4.6	1	-0.3	2.4	-2.1	70
15	16	67	5.7	7.5	3	-1.4	0.6	-3.3	68
16	7	19	2.2	3.6	10	1.0	4.8	-2.1	67
17	10	52	2.1	4.4	250	5.6	15.0	-5.1	51
18	10	28	2.1	4.5	299	6.8	13.4	0.0	43
19	11	28	2.6	6.1	246	8.3	16.2	-0.7	42
20	9	28	3.0	6.1	262	12.9	20.1	4.6	35
21	17	43	2.5	4.6	239	13.5	22.6	3.3	36
22	41	235	2.8	6.3	235	12.7	21.1	3.4	38
23	47	248	3.1	8.5	9	2.0	9.2	-2.9	74
24	6	23	2.1	4.2	297	0.4	6.4	-5.3	58
25	10	23	2.2	4.2	10	1.2	8.3	-7.4	53
26	8	33	3.1	5.4	13	1.1	5.4	-4.7	68
27	13	50	2.8	5.2	53	0.5	8.4	-6.8	69
28	11	58	4.0	6.7	2	-2.0	-0.8	-3.3	82
29	3	17	4.3	6.2	2	-2.1	0.6	-3.7	74
30	5	23	1.5	3.0	5	-0.5	4.1	-4.6	72

⁽a) Values are at Local temperature and pressure (LTP)

⁽b) Calculations are weighted with corresponding wind speeds

OPPORTUNITY DAILY DATA SUMMARY - MAY 2009

Day	(a) Average Concentration (ug/m3)	(a) Maximum Concentration (ug/m3)	Average Wind Speed (m/s)	Maximum Wind Speed (m/s)	Resultant Wind Direction (degrees) (b)	Average Temperature (deg C)	Maximum Temperature (deg C)	Minnimum Temperature (deg C)	Average Relative Humidity (percent)
1	7	17	1.4	2.5	173	3.2	10.1	-3.7	59
2	9	29	1.5	3.2	158	6.0	14.8	-4.4	55
3	3	19	2.4	4.3	193	6.7	13.5	2.3	74
4	6	17	2.5	4.1	258	6.7	12.5	1.0	47
5	13	66	3.5	8.0	246	7.8	13.5	4.6	63
6	4	20	2.2	4.5	259	6.5	10.0	2.3	64
7	9	37	3.2	5.7	273	3.6	6.1	1.1	62
8	5	20	2.3	3.6	298	4.1	9.4	-0.9	59
9	7	48	1.4	2.9	20	4.9	13.1	-3.6	52
10	8	21	1.8	3.7	304	6.5	14.1	-3.1	51
11	40	557	2.5	4.7	274	8.5	16.2	-1.6	51
12	10	34	2.7	6.2	270	1.4	4.3	-0.7	69
13	5	24	2.8	4.8	248	5.1	11.1	-0.6	47
14	11	45	3.3	5.7	243	7.5	13.8	3.6	59
15	6	27	2.2	4.0	328	7.3	14.4	0.8	55
16	15	33	2.0	4.3	250	11.2	21.1	-1.0	43
17	16	43	2.0	3.9	248	16.2	25.9	7.1	38
18	25	53	2.3	4.3	229	18.9	28.6	6.8	38
19	103	536	4.4	7.8	278	15.7	25.9	6.5	40
20	19	50	3.1	4.9	320	7.9	12.3	-1.5	39
21	8	18	2.0	4.5	15	8.1	18.2	-4.7	40
22	NO DATA	NO DATA	2.0	4.8	6	10.8	20.9	-0.4	45
23	NO DATA	NO DATA	2.3	4.5	158	14.9	24.5	1.5	49
24	5	14	1.9	4.1	344	10.5	14.4	7.0	83
25	7	18	1.7	4.1	116	10.8	18.3	3.8	68
26	12	34	1.9	3.6	229	13.8	21.7	3.6	52
27	19	65	2.0	3.5	258	14.1	22.4	3.5	47
28	22	60	1.8	3.4	246	15.3	24.7	4.4	45
29	32	175	1.7	4.4	263	15.3	25.6	6.4	56
30	25	133	1.7	2.8	183	17.1	25.2	9.5	53
31	15	51	2.3	4.2	256	17.0	24.0	9.1	41

⁽a) Values are at Local temperature and pressure (LTP)(b) Calculations are weighted with corresponding wind speeds

OPPORTUNITY DAILY DATA SUMMARY - JUNE 2009

Day	(a) Average Concentration (ug/m3)	(a) Maximum Concentration (ug/m3)	Average Wind Speed (m/s)	Maximum Wind Speed (m/s)	Resultant Wind Direction (degrees) (b)	Average Temperature (deg C)	Maximum Temperature (deg C)	Minnimum Temperature (deg C)	Average Relative Humidity (percent)
1	32	124	3.3	5.4	357	8.7	10.3	6.7	61
2	14	44	2.0	3.9	20	8.7	11.3	6.6	65
3	22	232	1.4	2.9	178	13.1	21.0	5.6	59
4	13	53	1.3	3.7	196	12.1	19.7	3.8	71
5	15	98	1.4	3.3	149	13.1	20.3	8.9	73
6	4	26	2.9	5.4	360	4.6	9.8	1.0	79
7	5	27	2.0	3.0	359	4.7	9.7	1.3	66
8	7	29	2.1	4.3	9	4.8	10.5	-0.6	79
9	6	30	1.5	3.2	9	8.0	14.4	2.6	66
10	16	89	1.7	3.7	15	10.6	18.0	0.9	57
11	21	80	1.6	3.3	12	11.8	19.9	2.2	53
12	21	95	1.7	3.0	139	13.7	22.6	2.3	48
13	30	415	1.7	3.4	193	14.9	24.1	6.9	53
14	10	69	1.6	3.2	226	13.9	19.8	8.1	66
15	6	19	1.3	3.1	21	12.4	16.9	8.8	80
16	21	75	1.5	3.7	55	14.5	22.3	7.2	69
17	11	48	1.8	4.0	255	13.9	19.3	10.2	69
18	21	112	1.8	3.7	337	12.1	17.9	6.2	67
19	14	34	2.4	4.5	274	13.2	20.7	5.5	64
20	4	21	0.8	1.3	245	10.1	11.8	9.0	84
21	6	26	2.1	3.7	287	12.3	18.9	7.3	70
22	2	14	2.2	3.9	257	7.9	11.6	3.7	67
23	10	25	1.7	2.6	207	11.8	22.1	0.5	53
24	23	38	2.1	4.3	224	17.0	27.1	3.3	45
25	49	108	2.7	5.1	315	19.8	28.1	11.1	40
26	25	61	2.1	4.7	307	13.5	21.8	3.5	48
27	21	51	2.1	3.6	293	14.2	23.2	3.7	44
28	34	58	1.7	2.6	229	18.5	28.3	7.0	41
29	35	79	1.8	3.4	11	17.6	26.6	6.4	49
30	31	59	2.3	5.3	12	17.5	26.9	5.4	45

⁽a) Values are at Local temperature and pressure (LTP)

⁽b) Calculations are weighted with corresponding wind speeds

WARM SPRINGS DAILY DATA SUMMARY - APRIL 2009

Day	(a) Average Concentration (ug/m3)	(a) Maximum Concentration (ug/m3)	Average Wind Speed (m/s)	Maximum Wind Speed (m/s)	Resultant Wind Direction (degrees) (b)	Average Temperature (deg C)	Maximum Temperature (deg C)	Minnimum Temperature (deg C)	Average Relative Humidity (percent)
1	0 (9)	6	1.3	2.3	86	-1.9	2.8	-6.4	63
2	1	11	2.8	5.0	178	-0.3	4.2	-5.0	71
3	2	15	2.7	4.3	1	-1.7	3.7	-7.9	72
4	1	12	2.1	3.2	2	-0.7	4.1	-6.3	61
5	2	26	1.6	3.1	174	-0.6	8.2	-9.1	57
6	4	16	1.8	3.4	186	3.9	13.2	-3.6	54
7	3	13	2.1	3.9	187	6.6	17.2	-2.1	50
8	5	16	2.0	5.1	178	7.8	15.3	0.9	53
9	4	17	1.1	1.8	39	3.7	7.9	-0.5	77
10	5	21	1.4	4.2	167	4.6	12.1	-2.4	67
11	5	24	1.6	4.3	229	5.5	12.8	-2.0	68
12	1	10	2.3	4.1	237	7.3	14.3	1.8	46
13	0	10	2.5	4.5	140	4.1	8.1	0.7	68
14	3	14	2.2	3.3	359	0.0	3.3	-2.2	64
15	2	14	3.8	5.2	346	-1.1	1.4	-3.4	64
16	2	11	1.6	2.4	350	1.1	5.1	-2.2	65
17	5	28	1.7	2.9	192	5.0	14.8	-6.4	53
18	4	14	1.9	4.4	259	7.0	13.5	0.0	43
19	2	13	2.9	6.0	233	8.2	16.1	-0.4	43
20	2	15	2.7	6.2	258	11.3	20.4	0.7	42
21	2	15	3.2	5.5	226	13.0	22.5	3.3	37
22	6	24	2.7	4.7	233	12.5	21.0	3.1	39
23	8	52	1.9	4.3	360	1.3	9.6	-4.1	76
24	2	15	2.0	4.1	300	0.0	6.3	-6.4	57
25	4	16	2.1	3.5	8	1.5	9.0	-6.3	53
26	3	18	1.9	3.0	12	1.3	6.2	-4.2	66
27	6	27	2.3	4.3	16	0.4	7.9	-6.0	70
28	3	32	3.0	4.8	355	-2.0	-0.6	-3.3	81
29	4	30	3.1	3.9	354	-2.1	0.8	-4.0	73
30	4	20	1.3	2.3	347	-0.6	4.3	-4.6	70

⁽a) Values are at Local temperature and pressure (LTP)

⁽b) Calculations are weighted with corresponding wind speeds(9) Negative value detected, zero reported

WARM SPRINGS DAILY DATA SUMMARY - MAY 2009

Day	(a) Average Concentration (ug/m3)	(a) Maximum Concentration (ug/m3)	Average Wind Speed (m/s)	Maximum Wind Speed (m/s)	Resultant Wind Direction (degrees) (b)	Average Temperature (deg C)	Maximum Temperature (deg C)	Minnimum Temperature (deg C)	Average Relative Humidity (percent)
1	2	15	1.6	2.7	164	3.3	10.3	-4.0	58
2	5	19	1.5	3.1	284	6.3	14.8	-2.8	54
3	3	15	2.4	5.4	173	6.9	13.9	2.1	72
4	3	22	3.5	6.1	231	6.8	12.6	1.4	48
5	3	21	4.0	7.5	200	7.9	14.7	2.7	62
6	1	13	2.4	4.4	206	7.0	10.5	3.8	61
7	4	24	3.2	6.0	250	4.0	7.2	1.1	59
8	3	16	2.0	3.9	270	4.1	10.0	0.0	58
9	4	20	1.6	2.8	176	5.0	13.1	-3.3	52
10	5	29	1.6	3.1	246	6.5	14.7	-2.6	53
11	9	28	2.3	4.6	259	8.3	17.3	-0.5	53
12	4	23	2.8	6.2	233	1.8	5.2	-0.9	68
13	2	12	3.8	6.3	225	5.4	11.7	-0.9	46
14	5	21	4.0	6.2	200	7.6	13.7	2.8	58
15	2	12	1.5	2.5	332	7.1	14.3	0.2	55
16	9	31	1.6	3.0	122	10.5	20.4	-0.4	47
17	8	30	2.7	4.9	232	15.9	24.8	7.3	37
18	14	79	2.5	5.8	213	18.0	28.1	7.6	39
19	20	67	3.9	8.4	208	15.1	25.5	5.5	40
20	5	18	3.0	5.7	294	8.0	12.8	-0.7	37
21	9	36	1.6	2.5	67	8.1	18.1	-3.1	42
22	8	25	1.7	4.0	352	10.8	20.5	-1.4	45
23	10	26	1.9	4.4	174	14.7	23.8	3.1	48
24	5	17	1.3	3.0	338	10.4	14.4	7.0	83
25	NO DATA	NO DATA	1.5	3.5	133	10.9	18.7	4.2	67
26	NO DATA	NO DATA	2.0	4.0	219	13.2	21.7	4.2	53
27	0 (9)	6	2.3	5.1	245	13.9	22.7	4.6	49
28	6	27	2.3	4.9	251	16.0	25.4	5.7	45
29	9	33	1.7	3.8	221	15.7	25.6	7.2	58
30	4	15	1.7	3.1	193	17.6	24.8	10.0	54
31	7	24	2.6	4.9	251	17.4	24.9	10.1	42

⁽a) Values are at Local temperature and pressure (LTP)

⁽b) Calculations are weighted with corresponding wind speeds
(9) Negative value detected, zero reported

WARM SPRINGS DAILY DATA SUMMARY - JUNE 2009

Day	(a) Average Concentration (ug/m3)	(a) Maximum Concentration (ug/m3)	Average Wind Speed (m/s)	Maximum Wind Speed (m/s)	Resultant Wind Direction (degrees) (b)	Average Temperature (deg C)	Maximum Temperature (deg C)	Minnimum Temperature (deg C)	Average Relative Humidity (percent)
1	8	31	2.6	4.7	338	9.9	12.1	7.9	60
2	5	12	1.6	2.1	298	9.5	11.9	7.3	65
3	3	12	1.2	2.2	252	13.5	21.7	4.5	58
4	7	22	1.4	2.3	200	13.2	19.4	6.3	69
5	9	48	1.2	2.5	274	13.6	21.4	9.8	73
6	5	46	2.1	4.1	353	5.4	10.0	1.8	77
7	2	16	1.8	3.2	339	5.6	10.7	1.8	64
8	4	24	1.4	3.0	354	5.4	11.3	0.2	78
9	4	38	1.2	2.1	1	8.6	15.6	1.9	65
10	4	17	1.3	2.2	358	11.3	18.8	0.9	57
11	6	22	1.3	2.2	346	12.6	20.7	3.2	53
12	8	29	1.7	3.5	149	14.5	22.8	4.4	48
13	6	26	1.6	2.6	200	15.2	23.1	7.6	54
14	4	13	1.7	2.7	186	14.3	20.4	10.0	67
15	4	16	1.0	1.4	119	12.8	16.7	9.1	81
16	12	50	1.0	3.1	341	14.4	22.5	6.1	70
17	7	24	1.5	3.6	213	14.5	20.2	10.4	69
18	4	16	1.0	2.6	25	12.3	18.8	5.8	70
19	7	20	2.1	4.2	205	13.9	21.0	7.4	64
20	3	17	0.9	1.2	277	10.7	12.5	9.3	83
21	3	19	1.5	2.7	318	12.7	19.3	7.8	74
22	1	16	2.5	5.3	249	8.9	13.2	4.1	65
23	3	13	1.8	3.1	191	12.2	22.5	1.8	54
24	9	78	2.7	4.7	199	17.3	26.8	5.4	46
25	9	21	1.7	3.0	36	19.2	26.8	8.3	43
26	8	27	1.8	4.7	318	13.7	22.4	4.4	37
27	9	32	2.0	3.7	258	14.8	22.9	6.1	30
28	15	190	2.2	3.2	218	19.1	28.5	8.9	NO DATA
29	10	32	1.3	2.0	13	18.5	28.1	7.9	37
30	10	32	1.4	2.3	4	17.8	26.8	7.0	47

⁽a) Values are at Local temperature and pressure (LTP)

⁽b) Calculations are weighted with corresponding wind speeds

APPENDIX B

DUST SAMPLE MEMORANDA

Blacktail Consulting, Inc.

P.O. Box 4692 **Butte MT 59702**

Ph (406) 498-4199 sheck@rfwave.net

MEMORANDUM – Opportunity / Warm Springs Settled Dust Sampling Events – Rev 1 Sampling Periods: March 2 – June 1, 2009 and June 1 – July 10, 2009

Submitted by Steve Heck, Blacktail Consulting, Inc.

September 16, 2009

This memorandum describes the preliminary results of settled dust sampling conducted at the Opportunity and Warm Springs air monitoring sites on behalf of Kuipers and Associates, and Anaconda-Deer Lodge County. All data, discussion and conclusions provided in this report are preliminary and will undergo a complete quality assurance review prior to issuance of final results in quarterly and annual reports in accordance with the project Sampling and Analysis Plan.

1. SAMPLE COLLECTION

On March 2, 2009, clean 9-inch diameter glass dishes were set out at both sites at a height of approximately 7 feet to capture and retain settling dust. A personal sampling pump supplied by SKC, Inc. was used to vacuum any settled dust from the dishes during twiceweekly site visits. Vacuuming could not be performed when standing water was present. In those instances, the water was allowed to evaporate, and vacuuming was performed at the next opportunity.

The vacuumed dust was collected onto 37-mm diameter, matched weight mixed cellulose ester (MCE) filter cassettes. The filters were recommended by the manufacturer for applications involving trace element analyses. The matched filter weights allow one to avoid filter preweighing. The total dust determination is made by simply weighing the two filters following sampling; the difference in their weights equals the mass of dust collected.

The glass dishes were vacuumed for the last time on June 1, 2009, and the cassettes were submitted to the MSE Laboratory for analysis. Both samples were weighed to determine the total amount of particulate collected. Samples having a sufficient net dust mass (≥ 1.0 mg) were analyzed for arsenic, cadmium, copper, lead and zinc.

A second set of dust samples was collected over the period of June 1 – July 10, 2009, in the manner described above

2. ANALYTICAL PROCEDURES

Following weighing, exposed filters were digested using Method SW-846 3050B for soils, and analyzed for trace metals by ICP Mass Spectrometer (ICP-MS) using Method SW-846 6020A. Additionally, a blank filter cassette was analyzed to provide background concentrations for the MCE filters.

3. ANALYTICAL RESULTS

Table 1 presents settled dust trace element results for the samples collected between March 2 and June 1. Table 2 presents results for the samples collected between June 1 and July 10.

3.1 Filter Weights

The filters were weighed on an enclosed balance with a resolution of 0.0001 grams (0.1 mg). Results are shown in Section A of Tables 1 and 2. The "Tare" filter weight is the weight of the unexposed matched weight filter, and the "Exposed" weight is the weight of the filter dust was collected on. The net dust weight is calculated as the difference between these values.

For the first set of samples, the mass of dust collected on the Opportunity filter was 35.5 mg, while the dust mass on the Warm Springs filter was 9.3 mg. These are the largest particulate masses collected from the glass dish sampling to date.

For the second set of samples, the respective dust masses were 12.0 mg at Opportunity and 1.6 mg at Warm Springs.

The two matched weight filters from the blank cassette also were weighed, and the difference in their weights was found to be 0.2 mg.

3.2 Trace Element Results

The trace element results are presented in Section B of Tables 1 and 2. The "Total" results represent the trace element concentrations in the exposed filter – which includes contributions from both the filter material and the collected dust. A blank filter was analyzed for trace elements, with results shown in the column labeled "Blank." Next, net filter trace element concentrations were calculated by subtracting the blank values from the total values. The net results represent the average trace element concentrations throughout the filter based solely on the contribution from the collected dust.

3.3. Trace Element Concentrations in Dust

The net trace element concentrations in Section B are for the entire exposed filter mass. Trace element concentrations in the collected dust were calculated using the net trace element results, Ambient Air Quality Monitoring

Opportunity and Warm Springs Sites
Second Quarter of 2009

Trace

the exposed filter weight and the collected dust weight. For the first sample set for the Opportunity site, the net dust weight was 0.0355 grams, while the total weight of the exposed MCE filter was 0.0862 grams. The following example illustrates the calculation used to determine trace element concentrations in the collected dust:

- Concentration of arsenic over the entire exposed filter was 66.6 mg/kg. Therefore, the amount of arsenic present was 66.6 mg/kg x 0.0862 g, or 5.741 x 10⁻³ mg.
- Because all of this net arsenic concentration was contained in the dust portion, the arsenic concentration in dust was $5.741 \times 10^{-3} \text{ mg} / 0.0355 \text{ g}$, or 162 mg/kg.

The concentrations of other trace elements in the dust were calculated using the same approach. Results are summarized in Section C of Tables 1 and 2.

Disassembly and weighing of the filter cassettes proceeded smoothly for these samples, and no analytical issues were encountered.

4. RECOMMENDATIONS FOR FUTURE SAMPLING AND ANALYSIS

The laboratory analysis proceeded smoothly for these filters. For the first set of filters the dust masses collected were sufficient for reliable trace element determinations. For the second set the mass was sufficient for the Opportunity sample. However, at Warm Springs the arsenic concentration was below the mass-adjusted laboratory reporting limit. For all other analytes the concentrations were at least five times greater than the reporting limit.

Recently, three additional glass dishes were installed at both sites, which will effectively quadruple the amount of particulate collected. This will be particularly helpful during the winter months, when airborne particulate levels tend to decrease significantly from summertime levels.

Currently, duplicate samples are being collected at the Opportunity site to provide a measure of method precision. This is being done by vacuuming dust from the dishes into separate filter cassettes (i.e., two dishes are being vacuumed into each cassette).

TABLE 1 - OPPORTUNITY / WARM SPRINGS SETTLED DUST SAMPLE RESULTS (Sampling conducted 3-2-2009 through 6-1-2009)

A. Filter Weight Data

Opportunity Analyzed Filter Weight (g)	0.0862
Opportunity Tare Filter Weight (g)	0.0507
Opportunity Net Particulate Weight (g)	0.0355
Warm Springs Analyzed Filter Weight (g)	0.0574
Warm Springs Tare Filter Weight (g)	0.0481
Warm Springs Net Particulate Weight (g)	0.0093

B. Trace Element Results

		Opportuni	ty	Warm Springs			Blank
Analyte	Total Filter Conc. (mg/kg)	Net Filter Conc. (mg/kg)	Reporting Limit (mg/kg)	Total Filter Conc. (mg/kg)	Net Filter Conc. (mg/kg)	Reporting Limit (mg/kg)	(1) Average Conc. (mg/kg)
As Cd Cu Pb Zn	66.6 2.07 232 59.4 282	66.6 2.07 232 59.2 260	0.870 0.058 0.725 0.116 1.74	12.1 0.951 62.4 21.0 124	12.1 0.951 61.9 20.8 102	1.31 0.087 1.09 0.174 2.61	ND ND 0.456 0.158 22.1
(1) Blank	concentrati	on based or	n unexposed t	ilter			

C. Calculated Trace Element Concentrations in Particulate

	Opportunity			Warm Springs		
Analyte	Net Filter Conc. (mg/kg)	Net Particulate Conc. (mg/kg)	(1) Reporting Limit (mg/kg)	Net Filter Conc. (mg/kg)	Net Particulate Conc. (mg/kg)	(1) Reporting Limit (mg/kg)
As	66.6	162	2.11	12.1	74.7	8.09
Cd	2.07	5.03	0.141	0.951	5.87	0.537
Cu	231.544	562	1.76	61.9	382	6.73
Pb	59.242	144	0.282	20.8	129	1.07
Zn	259.9	631	4.23	102	629	16.1
(1) Repon	ting Limit a	adjusted to re	flect mass of	particulate	collected	

TABLE 2 - OPPORTUNITY / WARM SPRINGS SETTLED DUST SAMPLE RESULTS (Sampling conducted 6-1-2009 through 7-10-2009)

A. Filter Weight Data

Opportunity Analyzed Filter Weight (g)	0.0618	
Opportunity Tare Filter Weight (g)	0.0498	
Opportunity Net Particulate Weight (g)	0.0120	
Warm Springs Analyzed Filter Weight (g)	0.0502	
Warm Springs Tare Filter Weight (g)	0.0486	
Warm Springs Net Particulate Weight (g)	0.0016	

B. Trace Element Results

		Opportuni	ty	Warm Springs			Blank
Analyte	Total Filter Conc. (mg/kg)	Net Filter Conc. (mg/kg)	Reporting Limit (mg/kg)	Total Filter Conc. (mg/kg)	Net Filter Conc. (mg/kg)	Reporting Limit (mg/kg)	(1) Conc. (mg/kg)
As	29.7	29.7	1.21	0.941	0.941	1.49	ND
Cd	0.854	0.854	0.081	0.504	0.504	0.100	ND
Cu	94.2	93.7	1.01	7.18	6.72	1.25	0.456
Pb	24.5	24.3	0.162	3.11	2.95	0.199	0.158
Zn	114	91.9	2.43	33.8	11.7	2.99	22.1
(1) Blank	concentrati	on based or	n unexposed f	ilter			

C. Calculated Trace Element Concentrations in Particulate

	Opportunity			Warm Springs		
	Net Filter Conc.	Net Particulate Conc.	(1) Reporting Limit	Net Filter Conc.	Net Particulate Conc.	(1) Reporting Limit
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
As	29.7	153	6.23	0.941	29.5	46.7
Cd	0.854	4.40	0.417	0.504	15.8	3.14
Cu	93.7	483	5.20	6.72	211	39.2
Pb	24.3	125	0.834	2.95	92.6	6.24
Zn	91.9	473	12.51	11.7	367	93.8
(1) Report	ting Limit a	djusted to re	flect mass of	particulate	collected	

Blacktail Consulting, Inc.

Air Quality / Meteorology / Data Quality

P.O. Box 4692 Butte MT 59702 USA

Ph (406) 498-4199 sheck@rfwave.net

<u>MEMORANDUM</u> – Opportunity / Warm Springs Dustfall Sampling Events – Rev 1 Sampling Periods: March 2 - April 5, 2009 and April 5 – June 1, 2009

Submitted by Steve Heck, Blacktail Consulting, Inc.

September 1, 2009

This memorandum describes the <u>preliminary</u> results of dustfall sampling conducted at the Opportunity and Warm Springs air monitoring sites on behalf of Kuipers and Associates, and Anaconda-Deer Lodge County. All data, discussion and conclusions provided in this report are preliminary and will undergo a complete quality assurance review prior to issuance of final results in quarterly and annual reports in accordance with the project Sampling and Analysis Plan. Analytical method development has continued, due to issues with isopropyl alcohol contamination described herein.

1. Sample Collection

On March 2, 2009, clean 6.75 inch diameter by 8.75 inch tall Nalgene, polypropylene dustfall jars were installed at both sites at a height of approximately 8 feet to capture and retain settling dust. The jars were de-contaminated by the laboratory prior to use by cleaning them with laboratory soap, then rinsing them with nitric acid and deionized water. The jars were initially filled

to a depth of 2 inches with deionized water (DI H_2O). The jars were inspected during twice-weekly site visits; DI H_2O was added as necessary to maintain a liquid level of at least an inch. At the end of the sampling period on April 5, 2009, the jars were covered with clean lids, and transported to the MSE laboratory for analysis. A field blank was also prepared by partially filling a clean jar with DI H_2O .

Another set of jars was installed on April 5, 2009 and retrieved on June 1, 2009. They were filled and maintained in an identical manner.

2. Analytical Procedures

After delivery to the laboratory, the dustfall jar contents were transferred into 2,000 mL beakers, which then were covered with watchglasses and evaporated in a convection oven at a temperature of 90 to 105°C. After the liquid evaporated down to approximately 100-200 mL, the contents were transferred to pre-weighed 200-mL beakers and evaporated to dryness. The beakers then were weighed to within 0.0001 grams to determine a net particulate residue weight. The residue was digested using SW-846 Method 3050B for soils, and analyzed for trace metals by ICP Mass Spectrometer (ICP-MS) using Method SW-846 6020A.

3. Raw Analytical Results

The raw analytical results are presented in Part A of Table 1 (for the first set of samples) and Table 2 (for the second set of samples). They show the trace element concentrations in the liquid as received by the laboratory, the volume of liquid initially evaporated, and the net weight of solids after evaporation.

The total trace element mass in each sample was calculated by multiplying the concentration in the sample liquid by the volume of liquid as received by the laboratory. Those results are shown in Part B of Tables 1 and 2.

4. Trace Element Concentrations in Dustfall Particulate

The trace element concentrations in the collected particulate were calculated by dividing the trace element weights by the total amount of particulate collected in each sample. Results are shown in Part C of Tables 1 and 2. The results for these samples were of the same magnitude as for previous glass dish dust samples, and were similar to values previously calculated from ARCO's South sampler trace element results. However, a large variance was noted for the duplicate samples collected at Opportunity. This could be due to non-uniformity in the particulate, particularly during blowing dust episodes (although it can't be stated that such episodes occurred during the sampling period). Also, because the total amounts of particulate captured during the sampling period were quite small (5.4 mg and 3.5 mg for the duplicate samples), any other materials captured by the jars (such as windblown vegetation matter or insects) would have a significant impact.

Preliminary particulate concentrations for arsenic and lead can be summarized as follows:

Sampling Period	Opportunity (mg/kg)		Warm Sprin	igs (mg/kg)
	As	Pb	As	Pb
3/2/2009 - 4/5/2009	122	31.7	140	49.7
3/2/2009 - 4/5/2009	268	107	N/A	N/A
(Duplicate)				
4/5/2009 - 6/1/2009	148	101	83.3	88.1

5. Calculation of Total Dustfall Rate

Dustfall is expressed in units of $g/m^2/month$, and is calculated by dividing the mass of particulate collected by the cross-sectional area of the dustfall jar, and dividing that result by the number of days the sample was collected over. With a diameter of 6.75 inches, the dustfall jars have a cross-sectional area of 35.78 in², or 0.0231 m². The calculated dustfall rates were as follows:

Sampling Period	Opportunity		Warm Springs		
	g/m ²	$g/m^2/month(1)$	g/m ²	$g/m^2/month(1)$	
3/2/2009 - 4/5/2009	0.23	0.21	0.10	0.08	
3/2/2009 - 4/5/2009	0.15	0.13	N/A	N/A	
(Duplicate)					
4/5/2009 - 6/1/2009	1.80	0.95	0.93	0.49	
(1) Dustfall rate based on 30-day month.					

The values for the first set of samples are basically at or below the method's stated detection limit of $0.2 \text{ g/m}^2/\text{month}$. While the mass of particulate for the second set of samples was much greater, the calculated dustfall rates were still very low compared to the Montana settleable particulate standard of $10 \text{ g/m}^2/\text{month}$.

6. Recommendations for Future Sampling and Analysis

The new evaporation and weighing procedure (implemented in January 2009) provides much better mass resolution –less than one mg, versus as much as 0.02-0.03 g (20-30 mg) previously. Additionally, the use of isopropyl alcohol was discontinued beginning with the samples discussed herein, due to trace element contamination issues.

Although current sampling procedures are providing better results, a new concern has arisen. Since late spring, the jars have trapped numerous flying insects, which makes an accurate particulate weight determination virtually impossible. The next set of jars (installed from June 1 to July 10, 2009) was not analyzed for that reason. Trapping of insects will likely be an issue until the first killing frost arrives, typically in early September.

TABLE 1 -- SUMMARY OF OPPORTUNITY / WARM SPRINGS DUSTFALL RESULTS (Samples collected from 3-2-2009 to 4-5-2009)

A. Analytical Results

Analyte	Opportunity-A	Opportunity-B	Warm Springs
Analyte	(ug/L)	(ug/L)	(ug/L)
As	0.462	0.625	0.222
Cd	0.040	0.072	0.045
Cu	1.41	1.34	0.949
Pb	0.120	0.249	0.079
Zn	9.20	6.95	5.16
Sample Volume (mL)	1425	1498	1385
Solids Weight (mg)	5.4	3.5	2.2
Solids (mg/L)	3.8	2.3	1.6
ND = Not Detected; N	NA = Not Applicab	ole	

B. Trace Element Weight

	Opportunity-A	Opportunity-B	Warm Springs
Analyte	Total	Total	Total
	(ug)	(ug)	(ug)
As	0.658	0.936	0.307
Cd	0.057	0.108	0.062
Cu	2.01	2.01	1.31
Pb	0.171	0.373	0.109
Zn	13.1	10.4	7.15

C. Trace Element Concentrations in Particulate

Analyte	Opportunity-A mg/kg	Reporting Limit mg/kg	Opportunity-B mg/kg	Reporting Limit mg/kg
As	122	13.9	268	21.4
Cd	10.6	0.926	30.8	1.43
Cu	372	11.6	574	17.9
Pb	31.7	1.85	107	2.86
Zn	2428	27.8	2975	42.9

Analyte	Warm Springs mg/kg	Reporting Limit mg/kg
As	140	34.1
Cd	28.3	2.3
Cu	597	28.4
Ambient Ai Quality Mo	nitoring 49.7	4.5
Opportunite And Warm	nringe 3248	68.2

Second Quarter of 2009

TABLE 2 -- SUMMARY OF OPPORTUNITY / WARM SPRINGS DUSTFALL RESULTS (Samples collected from 4-5-2009 to 6-1-2009)

A. Analytical Results

Analyte	Opportunity	Warm Springs	Field Blank									
Analyte	(ug/L)	(ug/L)	(ug/L)									
As	9.26	2.96	0.027									
Cd	0.351	0.300	0.025									
Cu	28.7	11.1	0.199									
Pb	6.35	3.13	0.049									
Zn	44.7	24.5	1.50									
Sample Volume (mL)	662	605	896									
Solids Weight (mg)												
Solids (mg/L)	62.7	35.5	0.2									
ND = Not Detected; N	NA = Not Applicat	ole										

B. Trace Element Weight

Analyte	Opportunity Total (ug)	Warm Springs Total (ug)	Field Blank Total (ug)
As	6.13	1.79	0.024
Cd	0.232	0.182	0.022
Cu	19.0	6.72	0.178
Pb	4.20	1.89	0.044
Zn	29.6	14.8	1.34

C. Trace Element Concentrations in Particulate

Analyte	Opportunity	Reporting Limit	Warm Springs	Reporting Limit
Allalyte	mg/kg	mg/kg	mg/kg	mg/kg
As	148	1.81	83.3	3.49
Cd	5.60	0.120	8.44	0.233
Cu	458	1.51	312	2.91
Pb	101	0.241	88.1	0.465
Zn	713	3.61	689	6.98

APPENDIX C

E-BAM PERFORMANCE CHECK / MAINTENANCE PROCEDURES SECOND QUARTER 2009

1.1 Performance Check / Maintenance Procedures

1.1.1 E-BAM Sampler

Several checks are performed on the E-BAM sampler, including both its particulate monitoring system and the internal barometric pressure sensor.

1.1.1.1 Leak Check (E-BAM Manual Section 2.4.1.1)

Each month, the E-BAM sampler is checked for leaks in the sampling train that could compromise data integrity. This check is performed by installing a BX-302 valve/filter assembly in place of the sampling inlet, and running the sampler in its "pump test" mode while slowly closing the valve. The check is considered satisfactory if the flow drops to below 1.5 LPM.

1.1.1.2 Operating Flow Rate Check (E-BAM Manual Section 2.4.1.5)

The operating flow rate check is performed monthly by installing an NIST-traceable BGI Delta-Cal flow monitor in place of the sampling inlet, and comparing the indicated flow against the target of 16.7 LPM. The check is considered satisfactory if the indicated flow is within +/- 2% of the target value. Otherwise, the flow is adjusted at set points of 14.0 LPM and 17.5 LPM, and the operating flow re-checked.

A successful operating flow rate check, when preceded by a successful leak check, proves that the E-BAM sampler is collecting valid PM_{10} data.

1.1.1.3 Pump Test (E-BAM Manual Section 2.4.1.7)

This test was discontinued during the second quarter of 2009, because experience has shown it to be of little value for indicating when a pump is nearing the end of its operating life.

1.1.1.4 Zero/Span Check (E-BAM Manual Section 2.4.3.1)

Zero and span membrane plates supplied with each sampler are used quarterly to check the calibration of the E-BAM sampler's beta attenuation detector (The manual indicates this check is not required until after 6 months of operation). These plates simulate specific particulate loads when used in conjunction with a blank filter tape. The checks are performed within the E-BAM sampler's "membrane test" menu, which directs the user to install and remove the plates at specified times. At the conclusion of the test, the display screen indicates whether the calibration test was successful. The membrane plates are certified by the manufacturer.

1.1.1.5 Clean Valve and Nozzle (E-BAM Manual Section 2.4.5)

The sampler's sample inlet nozzle (located directly above the filter tape) and vane (located directly beneath the filter tape) are cleaned monthly with a modified Q-tip using isopropyl alcohol. Care is taken that no excess alcohol drips into the vane assembly, which could affect

the unit's calibration. Immediately after performing this maintenance, the leak check described in Section 1.1.1.1 is repeated to ensure that the sample train integrity was not compromised.

1.1.1.6 Clean PM₁₀ Inlet (E-BAM Manual Appendix H)

Each month the PM₁₀ inlet is removed from the sampler, disassembled and cleaned using paper towels and isopropyl alcohol. Additionally, all o-rings are lubricated with stopcock grease as necessary.

1.1.1.7 Barometric Pressure Sensor Check (E-BAM Manual Section 2.4.1.4)

The E-BAM's internal barometer is checked monthly using a Wallace and Tiernan aneroid barometer that is routinely checked against a mercury wall barometer. If the results agree within +/- 2 mmHg, no adjustment is necessary.

1.1.2 Meteorological Sensors

1.1.2.1 Temperature (E-BAM Manual Section 2.4.1.3)

The E-BAM manual specifies a two-point calibration procedure using an ambient temperature and an ice bath. However, the manufacturer indicated that a single-point field calibration check was generally sufficient. Disassembly of the sensor for placement in an ice bath is not trivial, and is impractical as a routine field activity.

The temperature sensor is checked monthly at ambient conditions using an Assmann Psychrometer that has been certified against an NIST-traceable mercury thermometer. If the readings agree to within 0.5 degrees Celsius, no adjustment is necessary.

1.1.2.2 Relative Humidity (Model 593 Relative Humidity Sensor Operation Manual)

The Model 593 Manual indicates that recalibration (requiring additional specialized equipment) is required only if the sensor element is replaced in the field. For this project, calibration of the relative humidity sensor will be limited to monthly collocated checks using an Assmann Psychrometer that is certified against an NIST-traceable mercury thermometer. Wet-bulb and dry-bulb temperatures, together with ambient barometric pressure, are used with psychrometric tables to calculate a true relative humidity, which is compared against the E-BAM display. If the indicated relative humidity agrees with that obtained by the Assmann psychrometer to within +/-5% relative humidity, the results are considered acceptable. If consistently unacceptable results are obtained, the relative humidity sensor will be returned to the manufacturer for re-calibration and/or repair.

1.1.2.3 Wind Speed (Model 034B Wind Sensor Operation Manual)

The Model 034B Manual recommends an initial check of the unit's response to a known rotation rate. This is being done monthly in the field using a 300 rpm synchronous motor to produce a known wind speed of 18.49 mph (8.27 m/s). The manual specifies an accuracy of +/- 0.25 mph Ambient Air Quality Monitoring

Page C-3
Opportunity and Warm Springs Sites
Second Quarter of 2009

(0.11 m/s) at speeds below 22.7 mph (10.1 m/s). Additionally, the response of the sensor when stopped is observed; it should be 0.3 + -0.1 m/s.

1.1.2.4 Wind Direction (Model 034B Wind Sensor Operation Manual)

The manual does not specify routine checks for the wind direction sensor, beyond an initial check to confirm that the sensor's readout increases from 0 to 360 degrees as the shaft is turned clockwise. However, routine checks are performed monthly to verify proper operation. First, the sensor's alignment is verified by locking the sensor in place with its alignment pin, and ensuring that a response of between 178 and 182 degrees is obtained. Next, the sensor's linearity is verified by turning it in 90-degree intervals (using the sensor crossarm as a visual reference), and confirming that the E-BAM display's direction indication changes by 90 +/- 3 degrees with each step.

The initial orientation of the sensor was performed using a solar sighting in conjunction with NIST time (WWV) to establish precise direction azimuths. The use of solar sightings – rather than magnetic compass readings – negates any localized magnetic influences.

1.1.2.5 Filter Temperature and Humidity (E-BAM Manual Sections 2.4.2.1 and 2.4.2.2)

The E-BAM Manual includes provisions for adjusting the response of both of these parameters. However, there is no practical way to accurately check either parameter with an external reference standard. Therefore, checks of these parameters will be limited to review of downloaded data files for suspicious behavior.

1.2 Performance Check Results

Each set of performance check results is presented in Appendix D. Results obtained during the Second Quarter of 2009 were satisfactory

APPENDIX D

E-BAM PERFORMANCE CHECK RESULTS

OPPORTUNITY SITE

	DATE	4/5/2009	4/27/2009	5/27/2009
	INITIALS	SH	SH	SH
	EBAM OFF-LINE@	1502 MST	NA	1618 MST
EBA	AM BACK ON-LINE@	1546 MST	NA	1655 MST
		Monthly checks	Monthly checks	Monthly checks
METEOROLOGICAL PAR	RAMETERS		·	
Ambient Temperature	EBAM-Indicated	8.1		20.8
(+/- 1 deg C)	Audit	7.2		20.4
Ambient RH Check	EBAM-Indicated	29%		28%
(+/- 5% RH)	Audit (Td/Tw)	7.2 / 0.9		20.4 / 9.5
,	Audit RH	29.7%		24.5%
Wind Speed Response	EBAM-Stopped		0.3	0.3
0.2-0.4 m/s stopped)	EBAM-Spinning		3.2	2.5
Wind Speed - motor	EBAM-Indicated		8.3	8.3
(+/- 0.1 m/s)	Known		8.27	8.27
Ambient BP Check	EBAM-Indicated	641.8		635.4
(+/- 2 mm Hg)	Audit	642		635
Wind Direction Orientation	EBAM-Indicated		180	179-180
178 - 182 deg)	(with pin locked)			
Wind Direction Linearity	Along crossarm		155	156
referenced to crossarm)	+90 degrees		244	245
(+/- 3 deg. linearity)	+180 degrees		336	336
(+270 degrees		66	66
	+360 degrees		154	155
EBAM SAMPLER	, ,			
_eak Check (see 2.4.1.1)	Result	0.9 LPM		0.8 LPM
(Allowed <1.5 LPM)	Leak repaired?	NA		NA
Operating Flow (see 2.4.1.5)	As found	16.81		16.52
(Target 16.7 LPM,	As left	NA		16.66
allowed range 16.37-17.03)	(if recalibrated)	- 11 -		7,010
Flow Calibration - Low Flow	As found	NA		13.82
if necessary)	As left	NA		14.03
Flow Calibration - High Flow	As found	NA		17.27
if necessary)	As left	NA		17.46
Clean Nozzle (see 2.4.5)	Confirm (X)	Χ		Х
Clean PM-10 Inlet (Appdx H)		X		Х
Zero/Span Verification	Zero Pass/Fail	0.345 (Pass)		NA
Quarterly - see 2.4.3.1)	Span Pass/Fail	0.938 (Pass)		NA
Confirm Leak Check	Result	0.9 LPM		0.8 LPM
(after maintenance)	Leak repaired?	NA		NA
Audit and	Wind Speed:	300 RPM synchrono	us motor	
Calibration Standards			eter, Dry S/N 6782, W	et S/N 709085
			260, S/N LL03297; D	
		Initially oriented using		
		BGI Delta Cal, S/N 4		

WARM SPRINGS SITE

	DATE	4/5/2009	4/27/2009	5/27/2009
	INITIALS	SH	SH	SH
	EBAM OFF-LINE@	1302 MST	NA	1402 MST
EB	AM BACK ON-LINE@	1356 MST	NA	1550 MST
	1	Monthly checks	Monthly checks	Monthly checks
METEOROLOGICAL PAR	RAMETERS	and the same	The state of the s	and the same
Ambient Temperature	EBAM-Indicated	6.6		21.4 (A)
(+/- 1 deg C)	Audit	5.8		22.6
Ambient RH Check	EBAM-Indicated	32%		23%
(+/- 5% RH)	Audit (Td/Tw)	5.8 / 0.1		22.6 / 10.3
(17 370 1411)	Audit (14/1W)	32.2%		20.9%
Wind Speed Response	EBAM-Stopped	02.270	0.3	0.3
(0.2-0.4 m/s stopped)	EBAM-Spinning		1.5	4.0
Wind Speed - motor	EBAM-Indicated		8.3	8.3
(+/- 0.1 m/s)	Known		8.27	8.27
Ambient BP Check	EBAM-Indicated	645.2	0.21	638.5
(+/- 2 mm Hg)	Audit	645.2		638
Wind Direction Orientation	EBAM-Indicated	040	179	179
			179	179
(178 - 182 deg)	(with pin locked)		100	404
Wind Direction Linearity	Along crossarm		190	191
(referenced to crossarm)	+90 degrees		282	282
(+/- 3 deg. linearity)	+180 degrees		12	11
	+270 degrees		102	103 191
EDAM CAMPLED	+360 degrees		190	191
EBAM SAMPLER	In "			
Leak Check (see 2.4.1.1)	Result	0.5 LPM		<0.5 LPM
(Allowed <1.5 LPM)	Leak repaired?	NA		NA
Operating Flow (see 2.4.1.5)	As found	16.76		16.77
(Target 16.7 LPM,	As left	NA		NA
allowed range 16.37-17.03)	(if recalibrated)			
Flow Calibration - Low Flow	As found	NA		14.03
(if necessary)	As left	NA		NA
Flow Calibration - High Flow	As found	NA		17.54
(if necessary)	As left	NA		NA
Clean Nozzle (see 2.4.5)	Confirm (X)	X		X
Clean PM-10 Inlet (Appdx H)	Confirm (X)	X		Х
Zero/Span Verification	Zero Pass/Fail	0.353 (Pass)		NA
(Quarterly - see 2.4.3.1)	Span Pass/Fail	0.965 (Pass)		NA
Confirm Leak Check	Result	0.5 LPM		<0.5 LPM
(after maintenance)	Leak repaired?	NA		NA
Audit and	Wind Speed:	300 RPM synchronou	s motor	
Calibration Standards		Assmann Psychromet		t S/N 709085
		W & T Model FA1852		
		Initially oriented using		
		BGI Delta Cal, S/N 49		

⁽A) = Adjusted temperature response

APPENDIX E

AIR QUALITY SYSTEM NULL DATA QUALIFIER CODES SECOND QUARTER 2009

Opportunity Site April 2009

(All values are TSP in micrograms per cubic meter at Local temperature and pressure)

	Hour E	Beginn	ing																							
DAY			0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	OBS	MEAN
1	-1	-1	4	4	0	1	4	7	-2	7	-3	2	-1	-5	4	BA	11	-1	5	1	0	2	-5	-1	23	1.4
2	3	-1	0	-3	-2	1	-4	5	3	6	6	1	-3	1	24	-5	-5	4	6	19	-5	9	-5	18	24	3.0
3	10	11	18	0	11	20	6	-5	1	4	-2	16	1	6	-5	4	-1	2	-1	5	4	3	2	6	24	4.8
4	3	-5	3	24	14	12	-1	3	0	-3	-1	-4	-5	0	0	1	8	-5	3	-2	10	21	15	15	24	4.4
5	25	7	20	19	5	9	6	-2	-3	8	5	-5	12	0	7	BA	-5	7	3	9	14	3	3	-2	23	6.3
6	2	-1	2	3	1	-1	-5	6	1	23	8	9	15	21	19	20	10	4	7	7	13	-1	9	12	24	7.7
7	8	6	3	8	4	3	-1	6	0	38	8	12	15	12	13	25	5	10	13	11	9	7	19	3	24	9.9
8	8	16	13	4	8	6	4	11	7	22	13	23	40	32	27	21	26	24	9	8	15	6	10	15	24	15.3
9	2	3	11	5	12	10	8	17	0	14	5	-1	14	7	3	12	9	5	7	17	23	17	12	15	24	9.5
10	24	6	5	12	6	11	9	-1	8	10	9	3	6	13	18	-5	9	6	8	4	8	7	14	9	24	8.3
11	13	3	5	-5	16	12	1	2	2	1	6	2	3	13	13	9	15	11	8	10	9	-2	-5	6	24	6.2
12	-2	3	0	19	1	9	-2	0	6	0	6	7	10	7	14	11	6	1	2	1	5	1	2	-2	24	4.4
13	-3	3	11	4	2	1	-1	6	11	34	39	-5	-5	9	15	17	3	19	26	5	28	16	12	-1	24	10.3
14	11	23	20	6	2	7	2	3	10	-1	-2	6	5	20	19	17	14	40	37	7	17	7	9	3	24	11.8
15	21	8	0	2	-2	10	20	67	15	2	29	36	54	48	31	7	6	1	5	7	-2	5	7	10	24	16.1
16	3	-2	-1	6	8	6	12	13	8	19	10	8	1	-5	13	13	11	5	2	4	8	18	3	3	24	6.9
17	3	5	0	2	0	10	-5	0	6	6	10	8	3	11	10	15	5	19	12	22	14	52	18	4	24	9.6
18	9	9	5	3	3	7	7	3	11	12	15	22	10	7	14	9	7	6	13	10	13	25	28	-3	24	10.2
19	-1	15	11	7	3	2	-1	16	17	14	17	28	22	25	9	9	9	12	15	6	10	9	10	-1	24	11.0
20	7	0	2	-4	3	-5	4	13	28	19	26	3	15	10	14	20	10	4	12	4	12	16	2	-1	24	8.9
21	2	2	8	10	6	5	15	30	28	29	43	27	17	20	10	5	26	13	13	28	20	10	16	15	24	16.6
22	18	16	9	9	10	9	15	15	27	41	39	235	105	105	117	75	17	15	12	32	17	41	3	9	24	41.3
23	4	18	21	19	9	22	75	42	34	248	241	90	98	86	29	42	17	4	3	11	1	7	0	8	24	47.0
24	-2	7	-5	1	-2	16	-5	14	6	3	2	4	1	1	-2	9	14	5	6	13	13	8	23	8	24	5.8
25	12	9	11	23	14	9	21	1	5	11	6	3	13	6	6	17	3	14	13	6	9	11	16	8	24	10.3
26	4	4	11	3	9	19	10	3	2	5	11	-5	24	0	9	4	5	2	7	10	-5	14	33	19	24	8.3
27	2	16	1	22	13	4	10	17	15	14	25	22	6	8	30	6	8	-3	-5	37	23	1	50	-5	24	13.2
28	3	-1	2	2	-5	-5	-4	7	13	18	26	32	36	58	46	22	4	8	-1	-5 -	-1	5	14	-3	24	11.3
29	0	12	3	17	-5	1	3	14	9	2	0	-1	-2	0	-2	-4	2	-3	-2	7	6	0	16	0	24	3.0
30	0	14	3	17	-5	-1	23	8	2	9	3	-4	3	7	0	1	2	15	3	-5	15	1	11	7	24	5.4
NO.	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	28	30	30	30	30	30	30	30	30		
MAX.	25	23	21	24	16	22	75	67	34	248	241	235	105	105	117	75	26	40	37	37	28	52	50	19		
AVG.	6	7	7	8	5	7	8	11	9	21	20	19	17	17	17	13	8	8	8	10	10	11	11	6		
/ t v O.	U	'	'	U	J	'	U		9	٠ ـ	20	10	17	17	11	10	U	U	U	10	10			U		

Opportunity Site May 2009

(All values are TSP in micrograms per cubic meter at Local temperature and pressure)

	Hour I	Beginn																								
DAY	0000	0100			0400		0600	0700	0800	0900	1000	1100	1200	1300		1500	1600	1700		1900			2200	2300	OBS	MEAN
1	17	5	0	4	1	16	13	10	1	4	6	9	BA	10	7	9	6	4	5	10	10	-1	1	14	23	7.0
2	16	4	21	1	-2	11	16	-1	1	-1	6	5	7	6	-1	23	17	13	10	14	14	29	8	-3	24	8.9
3	-4	3	2	-3	4	-5	19	17	2	9	5	9	6	18	8	-3	-1	7	-5	-5	-5	-5	-5	12	24	3.3
4	-5	12	-3	10	3	3	1	-3	10	9	-4	16	1	7	3	8	AM	11	5	15	7	11	8	17	23	6.2
5	18	14	-3	8	-4	9	4	1	15	13	31	62	57	66	6	-1	-5	5	9	0	0	7	0	1	24	13.0
6	4	-5	13	3	0	7	3	4	-1	17	5	4	13	3	-5	20	3	3	3	1	-3	3	9	-5	24	4.1
7	4	-5	15	12	-5	13	8	14	9	22	-3	24	12	37	20	3	15	7	13	2	2	7	-2	3	24	9.5
8	0	1	7	12	-5	10	-2	11	2	5	16	7	0	2	0	0	-5	6	3	6	0	13	0	20	24	4.5
9	-5	22	-2	-5	28	-5	-4	-1	-1	3	0	3	-4	4	1	7	1	-1	2	28	48	22	8	13	24	6.8
10	-1	16	7	20	-5	21	7	5	11	4	4	6	5	3	15	-2	6	3	12	10	17	18	16	-5	24	8.0
11	16	-1	12	11	3	10	46	52	21	33	14	17	29	18	27	17	557	20	19	4	7	6	14	15	24	40.3
12	8	-5	21	3	0	33	0	15	0	-3	28	3	30	18	34	5	30	0	2	-2	2	1	5	1	24	9.5
13	0	6	-5	17	3	2	3	-5	1	5	-5	8	0	7	3	2	7	4	6	24	16	8	6	3	24	4.8
14	6	2	2	12	8	14	1	9	19	40	7	9	18	45	3	3	24	0	-5	12	9	-5	23	6	24	10.9
15	-5	5	-2	0	27	-4	3	-3	1	4	-1	0	6	7	4	1	9	11	6	9	27	13	13	15	24	6.1
16	-1	-1	16	2	8	11	5	33	17	16	15	12	16	23	14	19	20	11	18	16	11	30	19	24	24	14.8
17	19	17	14	13	25	4	10	9	25	23	43	19	10	9	6	6	15	8	12	14	39	16	17	7	24	15.8
18	12	15	11	12	18	9	25	46	36	27	53	48	43	41	18	32	21	21	13	24	15	26	17	12	24	24.8
19	22	10	7	21	20	30	42	35	63	196	167	129	100	110	113	310	299	536	176	37	34	2	6	13	24	103.3
20	4	13	7	8	13	16	38	12	12	17	29	16	44	28	50	21	15	8	7	42	25	2	3	14	24	18.5
21	5	4	4	4	-5	14	13	14	7	18	4	15	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	12	8.1
22	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	0	#DIV/0!
23	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	0	#DIV/0!
24	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	5	4	1	2	8	2	2	14	-5	12	10	4.5
25	6	9	0	13	-5	8	18	14	-1	4	5	12	13	7	7	3	12	18	9	3	16	-2	2	-3	24	7.0
26	7	5	-1	1	6	23	10	7	10	4	18	16	18	13	8	17	12	11	14	14	34	7	12	19	24	11.9
27	-4	12	2	16	-2	37	10	8	16	23	14	21	48	52	65	51	BA	16	10	14	9	4	18	3	23	19.3
28	-3	10	13	9	4	20	60	20	41	27	2	11	24	32	41	51	52	18	18	10	33	32	9	5	24	22.5
29	11	5	19	6	-1	19	15	9	30	21	29	89	84	95	80	175	3	20	11	17	-5	28	6	10	24	32.3
30	10	9	-3	13	0	15	4	4	15	20	8	8	68	133	30	33	43	62	22	24	30	30	14	18	24	25.4
31	18	12	5	13	16	1	13	3	3	15	14	16	10	28	19	18	14	17	21	13	7	51	6	16	24	14.5
NO	20	20	20	20	20	20	20	20	20	20	20	20	20	27	20	20	200	20	20	20	20	20	20	20		
NO.	28	28	28	28	28	28	28	28	28	28	28	28	26	27	28	28	26 557	28	28	28	28	28	28	28		
MAX.	22	22	21	21	28	37	60	52	63	196	167	129	100	133	113	310	557	536	176	42	48	51	23	24		
AVG.	6	7	6	8	5	12	14	12	13	21	18	21	25	30	21	30	45	30	15	13	14	13	8	9		

Opportunity Site June 2009 (All values are TSP in micrograms per cubic meter at Local temperature and pressure)

	Hour E	3eginn	ing																							
DAY			0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	OBS	MEAN
1	22	9	5	17	50	59	60	124	110	BA	BA	BA	27	24	17	29	17	22	13	14	24	10	15	7	21	32.1
2	13	5	15	5	13	15	10	15	6	8	13	13	20	13	21	14	44	15	12	7	26	6	11	5	24	13.5
3	11	6	-2	13	-3	-5	18	7	15	7	10	8	13	22	13	10	15	36	232	39	30	20	6	13	24	22.3
4	9	-5	-5	9	3	8	27	15	25	12	8	34	12	35	26	12	5	21	5	53	7	0	5	-3	24	13.3
5	6	8	7	3	8	3	-3	1	9	10	21	BA	82	45	98	7	14	3	14	-3	0	13	4	-2	23	15.1
6	4	4	-3	4	26	17	0	10	-5	5	5	-5	20	-5	1	4	-3	0	-5	12	-5	12	0	2	24	4.0
7	-1	1	-4	4	8	2	1	4	-3	27	-5	22	-5	-1	25	-5	14	-3	-3	10	1	12	9	2	24	4.7
8	0	5	18	-5	11	3	11	16	-4	29	8	18	15	18	10	1	4	0	4	2	0	0	-2	-3	24	6.6
9	10	1	-3	-5	-2	30	-5	-3	1	-4	5	3	11	9	13	16	8	4	7	18	11	9	3	1	24	5.8
10	12	9	-5	0	9	-2	21	8	19	15	12	10	15	25	24	89	45	7	8	25	8	11	14	9	24	16.2
11	-5	27	-5	11	5	27	2	9	16	18	12	3	15	15	70	63	35	80	28	7	25	24	-4	21	24	20.8
12	17	-5	9	3	7	25	9	15	7	10	12	15	BA	15	26	31	39	23	95	50	39	13	19	11	23	21.1
13	8	4	5	2	6	17	4	28	7	-3	11	-5	12	35	29	24	415	28	28	33	15	16	-3	7	24	30.1
14	2	-2	10	-2	6	14	12	-5	6	6	17	4	69	6	10	3	12	48	11	2	0	13	-3	5	24	10.2
15	1	13	-5	3	-2	17	1	12	6	-3	8	16	6	15	1	19	0	0	17	1	-4	11	-1	3	24	5.6
16	3	8	-5	11	3	-1	11	14	2	2	12	22	8	31	50	60	32	42	75	31	12	31	4	39	24	20.7
17	14	7	-5	6	12	-5	24	-4	7	4	11	48	21	3	36	-5	24	7	13	6	-3	24	6	2	24	10.5
18	0	5	0	0	1	21	4	12	1	1	15	-2	47	67	112	38	24	77	9	30	24	3	13	8	24	21.3
19	8	12	7	6	12	27	10	14	15	23	23	30	29	13	20	34	25	4	-2	13	7	4	-1	2	24	14.0
20	7	2	-2	21	2	-5	1	9	2	5	3	13	8	5	-5	13	-5	3	0	7	-4	13	-2	0	24	3.8
21	6	5	-4	4	8	6	-3	2	8	0	1	8	13	20	26	12	13	4	-2	15	0	-1	5	-3	24	6.0
22	2	-1	-1	2	3	14	-2	3	3	0	-3	0	BA	4	5	-2	5	13	1	7	-2	1	-2	-2	23	2.1
23	16	-5	3	-5	5	11	7	2	17	7	8	5	14	9	6	20	15	12	15	14	25	18	14	6	24	10.0
24	-5	22	9	9	16	20	18	36	31	32	35	23	38	37	23	21	24	25	23	25	24	26	15	16	24	22.6
25	22	22	13	15	13	15	77	10	18	72	101	108	97	108	95	69	100	37	32	39	30	39	26	24	24	49.3
26	40	12	35	2	0	29	12	15	34	12	8	14	18	12	13	61	46	43	35	45	30	38	31	22	24	25.3
27	16	17	13	13	28	8	15	15	32	15	12	19	17	28	22	24	33	28	25	21	27	51	18	14	24	21.3
28	32	11	21	21	22	13	27	29	28	31	27	37	58	52	46	34	31	56	37	41	39	54	38	28	24	33.9
29	21	19	21	9	20	64	19	29	33	30	24	23	37	29	47	47	79	70	37	29	28	42	43	32	24	34.7
30	20	21	9	4	17	40	33	27	19	41	26	25	26	40	49	39	48	59	33	34	19	36	35	33	24	30.5
NO	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
NO.	30	30	30	30	30	30	30	30	30	29	29	28	28	30	30	30	30	30	30	30	30	30	30	30		
MAX.	40	27	35	21	50	64	77	124	110	72	101	108	97	108	112	89	415	80	232	53	39	54	43	39		
AVG.	10	8	5	6	10	16	14	16	16	14	15	18	27	24	31	26	39	25	27	21	14	18	11	10		

Warm Springs Site April 2009

(All values are PM10 in micrograms per cubic meter at Local temperature and pressure)

	Hour I	Beginn	ing																							
DAY				0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	OBS	MEAN
1	2	-2	-3	3	-5	-5	-2	-5	-5	-5	2	-4	0	2	BA	-5	-5	AV	AV	6	-5	-1	-5	2	21	-1.9
2	3	-2	-3	-3	-3	-1	-5	4	-5	4	-3	5	2	6	-4	-4	5	-4	7	7	2	0	11	10	24	1.2
3	-5	-5	6	5	-5	3	-4	6	-5	6	2	5	4	6	4	-5	5	-2	-4	10	-5	15	0	4	24	1.7
4	2	4	2	0	9	6	-5	-5	-5	4	-5	-5	0	-3	0	-1	0	-2	-4	3	-5	5	12	5	24	0.5
5	9	-5	2	-5	26	2	5	-5	-5	-4	1	4	-2	BA	14	-2	-2	-3	8	-5	7	-5	14	-1	23	2.1
6	-5	-5	9	12	-5	-5	7	3	-5	3	11	8	9	9	1	10	3	7	9	-5	0	16	5	-3	24	3.7
7	6	6	-5	-5	13	-3	-5	-5	5	8	5	10	1	-2	8	9	-1	6	-5	1	2	2	10	3	24	2.7
8	1	8	3	-1	11	6	2	3	5	9	16	4	6	3	13	4	2	5	3	5	-4	0	0	11	24	4.8
9	-3	6	4	8	8	5	9	-3	5	-5	14	-1	8	3	2	5	6	3	2	-4	17	-5	7	2	24	3.9
10	13	-5	21	8	12	19	-5	-4	5	8	9	5	1	1	-5	-5	7	0	7	ΑV	ΑV	AV	-5	15	21	4.9
11	5	24	5	14	-5	11	15	-5	2	-3	9	7	-5	2	2	15	-5	4	-1	6	13	-5	8	-5	24	4.5
12	1	-1	7	-5	1	-5	-3	-1	0	4	2	-4	6	-2	4	10	7	-5	-1	-5	2	7	-5	-2	24	0.5
13	-3	-3	6	5	8	-3	-5	-5	-2	10	3	-5	-5	6	-1	5	-1	2	1	3	-2	-5	-2	-1	24	0.3
14	-5	14	13	-5	5	2	-5	3	-5	-2	-3	1	4	1	1	3	6	9	3	13	12	-5	8	6	24	3.1
15	-5	1	1	0	-2	7	1	11	6	-3	14	5	-5	1	1	1	3	-5	-1	4	5	10	5	-5	24	2.1
16	-2	7	-3	-5	-1	6	0	-5	5	7	-4	2	6	11	5	1	3	-1	-2	-5	6	4	7	6	24	2.0
17	3	6	7	-5	-5	28	-5	-5	14	4	6	13	7	6	5	4	11	-4	-2	3	2	3	12	9	24	4.9
18	3	3	-5	9	-5	3	-5	8	2	11	14	11	9	7	5	9	6	3	3	-5	7	-5	0	3	24	3.8
19	1	-5	4	4	-5	10	-5	-3	7	13	7	12	12	1	-5	4	2	7	-5	-5	0	5	1	2	24	2.5
20	-5	3	4	1	-2	11	-5	14	-5	11	15	6	-5	2	0	11	5	2	-5	-3	-5	4	-5	7	24	2.3
21	-2	2	2	-2	2	-2	-1	12	6	13	7	15	3	5	0	2	-4	1	-5	-5	-4	-4	0	12	24	2.2
22	8	8	1	13	-5	16	5	15	10	7	24	1	8	13	5	-5	1	10	-5	-5	9	5	4	2	24	6.0
23	9	0	17	0	11	0	4	7	30	32	52	13	13	5	2	-5	1	-5	4	3	1	-2	4	3	24	8.3
24	-5	1	1	-4	4	-5	-4	-5	7	-4	9	9	-3	7	-5	9	13	-1	13	-1	2	-1	15	-5	24	2.0
25	5	4	4	1	16	1	-3	6	6	3	10	5	4	11	0	16	2	1	2	-3	1	10	1	0	24	4.3
26	9	-4	5	-5	4	18	8	6	-5	11	6	6	7	5	5	-2	-2	-5	3	6	-4	4	2	1	24	3.3
27	-2	11	-1	10	1	4	3	8	7	1	14	7	6	2	2	0	13	-5	-4	1	27	10	17	1	24	5.5
28	4	-4	-5	4	-5	0	8	-2	-1	22	6	-5	-5	12	32	5	-3	-4	-5	-5	-5	-1	28	-5	24	2.8
29	5	16	11	15	30	2	4	8	5	-5	1	-1	3	-3	-5	2	-1	-5	-1	-5	4	0	9	-2	24	3.6
30	5	14	9	9	-5	11	20	-2	8	7	9	2	7	4	5	0	-5	2	-4	-1	5	-5	-5	-5	24	3.5
NO.	30	30	30	30	30	30	30	30	30	30	30	30	30	29	29	30	30	29	29	29	29	29	30	30		
MAX.	13	24	21	15	30	28	20	15	30	32	52	15	13	13	32	16	13	10	13	13	27	16	28	15		
AVG.	2	3	4	3	3	5	1	2	3	6	8	4	3	4	3	3	2	0	0	0	3	2	5	2		

Warm Springs Site May 2009

(All values are PM10 in micrograms per cubic meter at Local temperature and pressure)

	Hour E	3eginn	ing																							
DAY			0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	OBS	MEAN
1	-4	15	2	-2	-3	3	-5	12	9	7	4	BA	12	0	5	2	2	-5	-2	4	-5	-5	5	5	23	2.4
2	-1	4	1	10	10	-5	2	9	16	16	1	19	2	9	9	5	-3	-2	-3	3	-2	2	5	4	24	4.6
3	15	5	8	2	3	3	11	-1	3	12	5	0	7	-3	-3	-4	-5	6	-1	6	-2	-1	0	1	24	2.8
4	-5	-2	10	-5	-1	-5	7	4	4	20	5	22	3	9	-3	9	-5	-4	2	-5	-1	-5	4	6	24	2.7
5	4	8	-2	2	-5	9	-5	-1	12	6	-1	21	13	11	-5	-1	-5	7	9	-5	-5	0	-5	14	24	3.2
6	-5	-3	-2	4	-3	-2	0	6	11	13	1	-3	8	-4	-5	3	2	2	-5	-5	-1	-5	11	-5	24	0.5
7	5	4	3	7	4	10	12	9	24	8	2	-5	19	5	-5	4	-5	8	-5	-5	-5	3	-1	3	24	4.1
8	-4	3	11	-5	14	-3	16	4	8	9	-3	7	-5	5	2	0	2	10	-5	-5	-5	-4	14	-5	24	2.5
9	9	-5	2	-5	20	-5	12	-2	18	20	6	9	-3	10	6	2	-5	-5	-5	3	-1	-3	-2	12	24	3.7
10	-4	7	-5	11	12	-5	11	8	29	14	12	0	3	4	9	3	8	-5	-5	9	-3	-5	6	-5	24	4.5
11	10	16	-5	7	4	5	11	22	28	11	13	6	19	4	12	10	22	-5	16	-5	0	0	6	0	24	8.6
12	13	-3	23	-2	21	-4	21	4	11	4	-5	17	0	-2	2	9	5	-2	-2	-5	-5	6	-5	2	24	4.3
13	-1	12	-5	5	4	0	-3	10	11	9	-3	9	4	-3	10	-5	3	2	-5	-5	0	-4	2	-1	24	1.9
14	5	4	3	8	2	7	3	11	3	14	10	3	-3	19	-5	4	21	-5	-5	0	-2	0	5	8	24	4.6
15	-5	7	-5	12	-5	8	1	9	4	8	4	12	1	5	10	8	-5	2	-5	-3	-5	-5	-5	6	24	2.3
16	12	14	-3	6	4	14	6	16	25	8	5	14	10	5	31	-5	16	2	1	12	-4	-3	9	14	24	8.7
17	13	7	3	17	12	10	4	24	30	19	13	9	11	-3	4	6	5	0	13	0	-5	-5	7	3	24	8.2
18	11	8	6	18	11	4	19	31	26	19	9	15	16	10	79	21	4	9	4	11	-5	-5	8	14	24	14.3
19	-1	11	6	9	11	7	18	33	34	39	38	36	37	40	33	67	8	29	5	1	-2	2	10	1	24	19.7
20	2	-1	0	9	7	5	5	6	16	5	10	18	0	4	11	0	8	2	-1	9	-5	-3	2	6	24	4.8
21	2	-2	2	9	-4	6	6	36	17	10	11	15	3	10	6	12	6	4	5	13	6	11	11	11	24	8.6
22	14	7	-5	25	11	3	18	21	15	11	12	8	9	7	4	7	9	4	9	-1	0	3	7	5	24	8.5
23	4	14	7	10	0	13	5	26	25	16	16	7	11	3	14	5	8	18	16	-1	0	10	-5	7	24	9.5
24	5	7	-1	4	8	8	4	3	5	1	3	7	17	BA	13	5.5										
25	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	0	#DIV/0!
26	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	0	#DIV/0!
27	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	BA	6	6	2	-2	-5	-2	-5	-5	8	-0.6
28	2	24	-5	-2	13	14	1	27	15	12	10	4	-3	9	6	4	2	-2	4	1	-5	-4	-5	23	24	6.0
29	-3	-1	25	-5	10	8	0	33	21	13	15	13	7	2	BA	28	-5	23	14	8	-5	20	-5	-5	23	9.2
30	0	4	12	-5	14	6	4	7	15	3	11	5	5	3	4	-2	7	7	0	15	-5	-3	-5	4	24	4.4
31	7	6	-5	6	9	2	7	10	24	10	17	9	7	7	3	6	9	8	4	3	-5	-5	10	7	24	6.5
NO.	28	28	28	28	28	28	28	28	28	28	28	27	28	27	26	27	28	28	28	28	28	28	28	28		
MAX.	15	24	25	25	21	14	21	36	34	39	38	36	37	40	79	67	22	29	16	15	6	20	14	23		
AVG.	4	6	3	5	7	4	7	13	16	12	8	10	8	6	9	7	4	4	2	2	-3	0	3	23 5		
AVG.	7	U	5	5	,	7	,	13	10	14	O	10	O	U	9	,	7	7	4	4	-5	U	5	J		

Warm Springs Site June 2009

(All values are PM10 in micrograms per cubic meter at Local temperature and pressure)

	Hour E	Beginn	ing																							
DAY				0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	OBS	MEAN
1	7	-5	6	-5	31	9	11	14	10	11	16	7	BA	3	1	14	6	2	11	2	11	9	6	3	23	7.8
2	8	12	5	12	3	9	6	1	7	9	4	4	6	7	-1	6	3	-5	6	5	-1	3	7	3	24	5.0
3	12	6	1	-1	6	-5	12	4	11	11	-1	4	6	-4	4	-3	3	-4	0	6	-5	-4	7	-2	24	2.7
4	-3	-5	13	-3	-5	9	15	14	22	9	12	14	3	8	-2	-5	19	22	3	3	-5	12	12	5	24	7.0
5	4	-1	-1	2	0	1	9	-2	10	-1	BA	35	-4	18	7	-5	21	44	5	48	-5	-5	7	13	23	8.7
6	-5	12	11	-3	-2	16	4	46	1	0	-2	3	8	0	-1	3	2	3	5	4	-5	7	-2	10	24	4.8
7	7	-4	11	-1	8	-5	0	2	5	-5	3	9	-3	3	-1	6	-5	-2	-2	-5	-3	-4	10	16	24	1.7
8	-5	24	-5	8	-2	11	17	-5	19	11	-5	17	5	1	-5	10	5	-5	0	-5	5	3	-3	4	24	4.2
9	0	-4	19	-5	-5	20	-5	8	-1	2	15	9	3	2	38	7	-2	0	2	-5	-5	-4	3	10	24	4.3
10	-5	13	-3	6	0	10	4	11	17	8	8	8	1	8	8	-1	5	-5	2	2	-5	-2	3	-5	24	3.7
11	9	15	-5	10	6	4	13	22	20	9	1	10	3	9	-4	10	-1	-5	10	5	-5	-3	-5	5	24	5.5
12	17	-5	16	-2	10	16	3	21	29	15	13	BA	12	14	7	8	-1	18	6	-3	-5	4	2	-1	23	8.4
13	2	6	6	0	1	15	1	15	17	7	13	9	-4	8	2	9	-5	26	10	-2	11	2	7	-5	24	6.3
14	4	7	1	7	3	10	-1	7	7	9	1	6	-5	9	8	0	12	13	-5	-2	-5	10	-3	-5	24	3.7
15	8	4	9	2	-3	-3	7	-4	12	4	0	7	13	-5	12	-5	16	8	-5	14	-2	5	АН	ΑH	22	4.3
16	AH	AΗ	AΗ	AΗ	AΗ	ΑH	AΗ	AΗ	ΑH	ΑH	AΗ	13	13	0	50	25	11	-5	-5	10	-5	50	-5	10	13	12.5
17	17	11	7	10	11	-5	11	-5	13	3	13	8	-5	4	8	-5	22	24	-5	-5	5	4	12	12	24	6.9
18	-4	-5	2	3	4	4	9	12	9	-5	10	2	13	-5	16	6	3	-5	11	2	-5	-2	4	8	24	3.6
19	-5	7	8	14	-4	10	13	3	15	11	20	5	7	2	9	19	6	-4	6	3	5	7	5	9	24	7.1
20	-1	15	-5	2	12	-1	1	6	2	9	4	3	2	2	-2	1	17	4	-5	2	4	-5	10	4	24	3.4
21	-5	10	3	-4	5	-4	19	-5	6	6	4	3	5	2	5	7	-5	8	-5	6	17	-5	3	-4	24	3.0
22	-1	6	-2	1	-4	3	7	-5	-1	2	11	0	BA	-5	7	-4	0	6	6	1	-5	-5	-5	16	23	1.3
23	6	-2	-4	8	1	-1	8	6	13	5	5	6	13	4	2	1	-1	2	4	-2	-5	-5	4	8	24	3.2
24	-4	7	10	4	-1	2	16	18	28	15	8	13	-2	10	5	-1	2	78	3	3	-2	-4	2	7	24	9.0
25	0	8	4	9	10	4	15	16	21	8	2	8	17	6	7	14	11	17	10	15	1	7	7	-5	24	8.8
26	21	-5	24	5	2	24	4	27	18	12	10	15	3	7	8	11	3	6	0	1	-5	-5	8	0	24	8.1
27	8	4	13	6	5	9	2	19	22	19	6	12	9	9	8	32	13	6	8	0	-4	-1	-5	23	24	9.3
28	5	4	9	9	11	4	8	32	8	17	12	6	10	7	190	-5	0	11	4	8	-1	11	-3	6	24	15.1
29	9	10	8	14	10	12	6	32	25	14	16	10	20	6	9	7	-1	17	13	7	0	-3	3	6	24	10.4
30	-5	24	7	10	13	-5	32	13	32	16	18	14	13	8	15	5	15	10	8	4	0	-5	3	2	24	10.3
NO.	29	29	29	29	29	29	29	29	29	29	28	29	28	30	30	30	30	30	30	30	30	30	29	29		
MAX		24	24	14	31	24	32	46	32	19	20	35	20	18	190	32	22	78	13	48	17	50	12	23		
AVG		6	6	4	4	6	9	11	14	8	8	9	6	5	14	6	6	10	3	4	-1	2	3	5		

Qualifier Codes and Descriptions

as of 12-APR-07

Qualifier Type	Qualifier Type Desc	Qualifier Code	Qualifier Desc
ΕX	Exceptional Event Qualifier	D	SANDBLASTING
		F	STRUCTURAL FIRE
		Н	CHEMICAL SPILLS & INDUST. ACCIDENTS
		I	UNUSUAL TRAFFIC CONGESTION
		J	CONSTRUCTION/DEMOLITION
		K	AGRICULTURAL TILLING
		L	HIGHWAY CONSTRUCTION
		M	REROUTING OF TRAFFIC
		N	SANDING/SALTING OF STREETS
		0	INFREQUENT LARGE GATHERINGS
		Р	ROOFING OPERATIONS
		Q	PRESCRIBED BURNING
		R	CLEAN UP AFTER A MAJOR DISASTER
IAT	Natural Event Qualifier	Α	HIGH WINDS
		В	STRATOSPHERIC OZONE INTRUSION
		С	VOLCANIC ERUPTIONS
		E	FOREST FIRE
		G	HIGH POLLEN COUNT
		S	SEISMIC ACTIVITY
		U	SAHARA DUST
IULL	Null Data Qualifier	AA	SAMPLE PRESSURE OUT OF LIMITS
		AB	TECHNICIAN UNAVAILABLE
		AC	CONSTRUCTION/REPAIRS IN AREA
		AD	SHELTER STORM DAMAGE
		AE	SHELTER TEMPERATURE OUTSIDE LIMITS
		AF	SCHEDULED BUT NOT COLLECTED
		AG	SAMPLE TIME OUT OF LIMITS
		AH	SAMPLE FLOW RATE OUT OF LIMITS
		Al	INSUFFICIENT DATA (CANNOT CALCULATE)
		AJ	FILTER DAMAGE
		AK	FILTER LEAK
		AL	VOIDED BY OPERATOR
		AM	MISCELLANEOUS VOID
		AN	MACHINE MALFUNCTION
		AO	BAD WEATHER
		AP	VANDALISM
		AQ	COLLECTION ERROR
		AR	LAB ERROR
		AS	POOR QUALITY ASSURANCE RESULTS
		AT	CALIBRATION
		AU	MONITORING WAIVED
		AV	POWER FAILURE (POWR)
		AW	WILDLIFE DAMAGE
		AX	PRECISION CHECK (PREC)
		AY	Q C CONTROL POINTS (ZERO/SPAN)
		<u> </u>	Q O OUNTROL I OINTO (ZERO/OFAIN)

	BA	MAINTENANCE/ROUTINE REPAIRS
	BB	UNABLE TO REACH SITE
	ВС	MULTI-POINT CALIBRATION
	BD	AUTO CALIBRATION
	BE	BUILDING/SITE REPAIR
	BF	PRECISION/ZERO/SPAN
	BG	Missing ozone data not likely to exceed level of standard
	ВН	Interference/co-elution
	BI	Lost or damaged in transit
	BJ	Operator Error
	BK	Site computer/data logger down
	SA	Storm Approaching
Quality Assurance Qualifier	1	Deviation from a CFR/Critical Criteria Requirement
	2	Operational Deviation
	3	Field Issue
	4	Lab Issue
	5	Outlier
	6	QAPP Issue
	7	Below Lowest Calibration Level
	9	Negative value detected - zero reported
	MD	Value between MDL and IDL
	ND	No Value Detected
	SQ	Values Between SQL and MDL
	V	VALIDATED VALUE
	W	FLOW RATE AVERAGE OUT OF SPEC.
	X	FILTER TEMPERATURE DIFFERENCE OUT OF SPEC.
	Υ	ELAPSED SAMPLE TIME OUT OF SPEC.
	Quality Assurance Qualifier	BB BC BD BE BF BG BH BI BJ BK SA Quality Assurance Qualifier 1 2 3 4 5 6 7 9 MD ND SQ V W X

ATTACHMENT 1

LABORATORY ANALYTICAL REPORTS

Note: Non-applicable portions of laboratory reports have been excluded.

Tuesday, April 28, 2009

Steve Heck Kuipers & Associates, LLC P.O. Box 641 Butte, MT 59703

RE: DUSTFALL BUCKETS

Work Order: 0904042

Dear Steve Heck:

MSE Lab Services received 3 sample(s) on 4/7/2009 for the analyses presented in the following report.

Please find enclosed analytical results for the sample(s) received at the MSE Laboratory.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Marcel Cameron

Marcee Cameron Laboratory Director/ Chemist 406-494-7371

Enclosure

P.O. Box 4078 200 Technology Way

Butte, MT 59701

Lab: 406-494-7334

Fax: 406-494-7230 labinfo@mse-ta.com

Kuipers & Associates, LLC

Lab Order:

0904042

Project:

DUSTFALL BUCKETS

Lab ID:

CLIENT:

0904042-001

Client Sample ID: KA-DF-OPP-006

Collection Date: 4/5/2009 2:50:00 PM

Date: 30-Apr-09

Matrix: AQUEOUS

Analyses	Result	Limit Qualifi	ier Units	DF	Date Analyzed
SW-846 ICP-MS METALS, TOTAL		SW6020A	E200.2		Analyst: SW
Arsenic	0.462	0.053	μg/L	1	4/27/2009
Cadmium	0.040	0.004	μg/L	1	4/27/2009
Copper	1.41	0.044	μg/L	1	4/27/2009
Lead	0.120	0.007	μg/L	1	4/27/2009
Zinc	9.20	0.105	μg/L	1	4/27/2009
TOTAL DISSOLVED SOLIDS		A2540C			Analyst: kgw
TDS	ND	10	mg/L	1	4/10/2009

Ε Qualifiers: J

Value above quantitation range Analyte detected below the Reporting Limit

Holding times for preparation or analysis exceeded

Н Limit ND

Instrument Reporting Limit

MDL Method Detection Limit

Not Detected at the Method Detection Limit (MDL)

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 30-Apr-09

CLIENT:

Kuipers & Associates, LLC

Lab Order:

0904042

Project:

DUSTFALL BUCKETS

Lab ID:

0904042-002

Client Sample ID: KA-DF-OPP-007

Collection Date: 4/5/2009 2:50:00 PM

Matrix: AQUEOUS

Analyses	Result	Limit Qualifi	er Units	DF	Date Analyzed
SW-846 ICP-MS METALS, TOTAL		SW6020A	E200.2		Analyst: SW
Arsenic	0.625	0.050	μg/L	1	4/27/2009
Cadmium	0.072	0.003	μg/L	1	4/27/2009
Copper	1.34	0.042	μg/L	1	4/27/2009
Lead	0.249	0.007	μg/L	1	4/27/2009
Zinc	6.95	0.100	μg/L	1	4/27/2009
TOTAL DISSOLVED SOLIDS		A2540C			Analyst: kgw
TDS	ND	10	mg/L	1	4/10/2009

Qualifiers:

Value above quantitation range

J Analyte detected below the Reporting Limit

MDL Method Detection Limit

Н Limit Holding times for preparation or analysis exceeded

Instrument Reporting Limit

ND

Not Detected at the Method Detection Limit (MDL)

Ε

Date: 30-Apr-09

CLIENT:

Project:

Lab ID:

Kuipers & Associates, LLC

Lab Order:

0904042

DUSTFALL BUCKETS

0904042-003

Client Sample ID: KA-DF-WS-005

Collection Date: 4/5/2009 1:02:00 PM

Matrix: AQUEOUS

Analyses	Result	Limit Qualifi	er Units	DF	Date Analyzed
SW-846 ICP-MS METALS, TOTAL		SW6020A	E200.2		Analyst: SW
Arsenic	0.222	0.054	μg/L	1	4/27/2009
Cadmium	0.045	0.004	μg/L	1	4/27/2009
Copper	0.949	0.045	µg/L	1	4/27/2009
Lead	0.079	0.007	μg/L	1	4/27/2009
Zinc	5.16	0.108	μg/Ľ	1	4/27/2009
TOTAL DISSOLVED SOLIDS		A2540C			Analyst: kgw
TDS	ND	10	mg/L	1	4/10/2009

Review

Qualifiers:

Value above quantitation range

J Analyte detected below the Reporting Limit

Method Detection Limit

Н Limit Holding times for preparation or analysis exceeded

Instrument Reporting Limit

ND

Not Detected at the Method Detection Limit (MDL)

Ε

MDL

P.O. Box 4078 200 Technology Way Butte, MT 59701 Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 30-Apr-09
Report Date: 28-Apr-09

QA/QC SUMMARY REPORT

Client:

Kuipers & Associates, LLC

Work Order:

0904042

Project:

DUSTFALL BUCKETS

BatchID:

2372

Analyte	Result	RL	Units	Spike LvI	% Rec	Low Limit	High Limit	RPD i	RPD Limit Qu	alifier
Sample ID: 2372-PB			Method:	SW6020A	Batch ID:	2372	Δn	alysis Date	4/27/2009	
Arsenic	, ND	1.50	µg/L	3W0020A	Dateir ID.	2372	711	arysis Date	. 4/21/2003	
Cadmium	ND	0.100	μg/L μg/L							
Copper	ND	1.25	μg/L μg/L							
Lead	0.147	0.200	μg/L μg/L							
Zinc	ND	3.00	μg/L							
Sample ID: 2372-LC	s		Method:	SW6020A	Batch ID:	2372	Ana	alysis Date	: 4/27/2009	
Arsenic	16.3	1.50	μg/L	20.00	81.7	80	120	-		
Cadmium	1.76	0.100	μg/L	2.000	87.9	80	120			
Copper	19.5	1.25	μg/L	20.00	97.6	80	120			
Lead	19.4	0.200	μg/L	20.00	97.2	80	120			
Zinc	324	3.00	μg/L	400.0	81.0	80	120			
Sample ID: 0904042	?-001AMS		Method:	SW6020A	Batch ID:	2372	Ana	alysis Date	4/27/2009	
Arsenic	1.10	0.053	μg/L	0.7018	91.2	70	130			
Cadmium	0.831	0.004	μg/L	0.8772	90.2	70	130			
Copper	5.35	0.044	μg/L	4.386	89.9	70	130			
Lead	0.488	0.007	μg/L	0.3509	105	70	130			
Zinc	17.4	0.105	μg/L	8.772	93.1	70	130			
Sample ID: 0904042	?-001AMSD		Method:	SW6020A	Batch ID:	2372	Ana	alysis Date	: 4/27/2009	
Arsenic	1.09	0.053	μg/L	0.7018	89.6	70	130	1.03	20	
Cadmium	0.831	0.004	μg/L	0.8772	90.1	70	130	0.0936	20	
Copper	5.33	0.044	μg/L	4.386	89.3	70	130	0.480	20	
Lead	0.492	0.007	μg/L	0.3509	106	70	130	0.753	20	
Zinc	17.3	0.105	μg/L	8.772	92.1	70	130	0.479	20	

Review

s

P.O. Box 4078 200 Technology Way Butte, MT 59701 Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 30-Apr-09 Report Date: 28-Apr-09

QA/QC SUMMARY REPORT

Client:

Kuipers & Associates, LLC

Work Order:

0904042

Project:

DUSTFALL BUCKETS

BatchID:

R9394

Analyte	Result	RL	Units	Spike Lvl	% Rec	Low Limit	High Limit RPD	RPD Limit Qualifier
Sample ID: LCS W	/C2068 783	10	Method: mg/L	A2540C 833.0	Batch ID: 94.0	R9394 80	Analysis D	ate: 4/10/2009
Sample ID: PB TDS	ND	10	Method: mg/L	A2540C	Batch ID:	R9394	Analysis D	ate: 4/10/2009

Review

MSE Technology A Laboratory Services	pplications, Inc.	CHA	AIN	OF CL	JST	OD'	Y			
PROJECT ID					DA A	NALYSI	S RE	QUES	TED	REMARKS
LABORATORY PERFORMING AN	ciates				20					
LABORATORY PERFORMING AN	ALYSIS					47.5	<u> </u>			Turnaround Time (TAT)
SAMPLERS (Signature)	elu				DICU,	TAL	<u> </u>			≅ Standard TAT
					As, C	100	51			☐ Rush TAT (please contact laboratory personnel for arrangements)
SAMPLE ID	LAB ID		ATE	TIME			-			00012700111500
KA-DF-0AP-006	0904042-001	4 19-3	509	1450	X	$ \times$				OPPA 3-2-09 to 4-5-09
								$\perp \perp \downarrow$		
KA-DF-OPP-007	002	A 45	509	1450	X	X	1_			OAP-B 3-2-09 to 4-5-09
										`
KA-DF-WS-005	003	A 40	509	1302	X	X	/			WS 3-2-09 +64-5-09
		· \								
					TT			\dagger		
						_	+	+		
					-		-	+		
							-	+-+		
							-			
							-	1		
RELINQUISHED BY (Signature)	4-7-09 0927	RECEIVED BY (S	ignature)	d	111	7109	T	TI	ME	COMMENTS
PRINTED NAME	COMPANY	PRINTED NAME	<u> </u>	<u> </u>	COME	//// I PANY		09	d/_	nld in box
Steven B. Heck	Blackstail Con	PRINTED NAME	Davo	1	W	PANY 1SE - ~	TA			MA CH DOX
RELINQUISHED BY (Signature)	DATE TIME	RECEIVED BY (S	ignature)			DATE	"	Ti	ME	12.50
PRINTED NAME	COMPANY	PRINTED NAME			COMP	PANY				12.00
RELINQUISHED BY (Signature)	DATE TIME	RECEIVED BY (S	ignature)			DATE		TI	ME	MSE LABORATORY SERVICES 200 Technology Way, P.O. Box 4078
PRINTED NAME	COMPANY	PRINTED NAME			COMP	PANY				Butte, MT 59701
		1								PH: (406) 494-7334 / FAX: (406) 494-7230

Sample Receipt Checklist

Client Name KUIPERS&ASSOC			Date and Time Receive	ed: 4/7/2009 1:11:21 PM
Work Order Number 0904042	RcptNo: 1		Received by SW	
COC_ID: CoolerID Checklist completed by Signature	o: Vod 417 Date	log	Reviewed by holials	C 4/28/09 Date
Matrix:	Carrier name	Hand-Delivered		
Shipping container/cooler in good condition?		Yes 🗹	No Not Pres	ent 🗌
Custody seals intact on shippping container/cod	oler?	Yes 🗌	No Not Pres	ent 🗹
Custody seals intact on sample bottles?		Yes 🗹	No Not Pres	ent
Chain of custody present?		Yes 🗹	No 🗌	
Chain of custody signed when relinquished and	received?	Yes 🗹	No 🗆	
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌	
Samples in proper container/bottle?		Yes 🗹	No 🗆	
Sample containers intact?		Yes 🗹	No 🗆	
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌	
All samples received within holding time?		Yes 🗹	No 🗌	
Container/Temp Blank temperature in complian	ce?	Yes 🗌	No 🗹	
Water - VOA vials have zero headspace?	No VOA vials subm	itted 🗹	Yes 🗌	No 🗆
Water - pH acceptable upon receipt?	Adjusted? No	Yes Chec	No ☐ Blan cked byKuC	k □) 4-10-09
Any No and/or NA (not applicable) response mu	ust be detailed in the co	omments section I	be	
Client contacted	Date contacted:		Person conta	acted
Contacted by:	Regarding:			
Comments: TEMP=12.5oC; SEALED D Corrective Action	USTFALL BUCKETS F	H/D IN BOX - Se	ealed w/black tape	

Thursday, July 23, 2009

Steve Heck Kuipers & Associates, LLC P.O. Box 641 Butte, MT 59703

RE: DUSTFALL BUCKETS

Work Order: 0906034

Dear Steve Heck:

MSE Lab Services received 5 sample(s) on 6/3/2009 for the analyses presented in the following report.

Please find enclosed analytical results for the sample(s) received at the MSE Laboratory.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Marcee Cameron

Laboratory Director/ Chemist

Marcee Cameron

406-494-7371

Enclosure

P.O. Box 4078 200 Technology Way Butte, MT 59701 Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 23-Jul-09

CLIENT:

Kuipers & Associates, LLC

Lab Order:

0906034

Client Sample ID: KA-DF-OPP-008(4-5-09/6-1-0

Project:

DUSTFALL BUCKETS

Lab ID:

0906034-001

Matrix: AQUEOUS

Collection Date: 6/1/2009 10:58:00 AM

Analyses	Result	Limit Qualifi	er Units	DF	Date Analyzed	
SW-846 ICP-MS METALS, TOTAL	SW6020A		E200.2		Analyst: SW	
Arsenic	9.26	0.113	μg/L	1	7/13/2009	
Cadmium	0.351	0.008	μg/L	1	7/13/2009	
Copper	28.7	0.094	μg/L	1	7/13/2009	
Lead	6.35	0.015	μg/L	1	7/13/2009	
Zinc	44.7	0.227	µg/L	1	7/13/2009	
TOTAL DISSOLVED SOLIDS		A2540C			Analyst: kgw	
TDS	63	10	mg/L	1	6/8/2009	

Review

Qualifiers:

Value above quantitation range

J Analyte detected below the Reporting Limit

MDL Method Detection Limit

Holding times for preparation or analysis exceeded Н

Instrument Reporting Limit Limit

Not Detected at the Method Detection Limit (MDL)

Ε

ND

Date: 23-Jul-09

CLIENT:

Kuipers & Associates, LLC

DUSTFALL BUCKETS

Client Sample ID: KA-DF-WS-006(4-5-09/6-1-09

Lab Order:

0906034

Collection Date: 6/1/2009 12:25:00 PM

Project: Lab ID:

0906034-002

Matrix: AQUEOUS

Analyses	Result	Limit Qualifi	er Units	DF	Date Analyzed
SW-846 ICP-MS METALS, TOTAL		SW6020A	E200.2		Analyst: SW
Arsenic	2.96	0.124	μg/L	1	7/13/2009
Cadmium	0.300	0.008	μg/L	1	7/13/2009
Copper	11.1	0.103	μg/L	1	7/13/2009
Lead	3.13	0.017	μg/L	1	7/13/2009
Zinc	24.5	0.248	μg/L	1	7/13/2009
TOTAL DISSOLVED SOLIDS		A2540C	•		Analyst: kgw
TDS	36	10	mg/L	1	6/8/2009

Qualifiers:

E Value above quantitation range

Analyte detected below the Reporting Limit

Method Detection Limit

Н Holding times for preparation or analysis exceeded

Instrument Reporting Limit Limit

Not Detected at the Method Detection Limit (MDL)

P.O. Box 4078 200 Technology Way

Butte, MT 59701

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

J

MDL

CLIENT:

Kuipers & Associates, LLC

Lab Order:

0906034

Client Sample ID: KA-DF-FB-005(6-1-09)

Date: 23-Jul-09

Collection Date: 6/1/2009 12:25:00 PM

Project:

DUSTFALL BUCKETS

Lab ID:

0906034-003

Matrix: AQUEOUS

Analyses	Result	Limit	Qualifi	er Units	DF	Date Analyzed
SW-846 ICP-MS METALS, TOTAL		swe	6020A	E200.2		Analyst: SW
Arsenic	0.027	0.084	J	μg/L	1	7/13/2009
Cadmium	0.025	0.006		μg/L	1	7/13/2009
Copper	0.199	0.070		µg/L	1	7/13/2009
Lead	0.049	0.011		μg/L	1	7/13/2009
Zinc	1.50	0.167		μg/L	1	7/13/2009
TOTAL DISSOLVED SOLIDS		A2	540C			Analyst: kgw
TDS	ND	10		mg/L	1	6/8/2009

Qualifiers:

Ε Value above quantitation range

Analyte detected below the Reporting Limit

Holding times for preparation or analysis exceeded

MDL

Method Detection Limit

Limit Instrument Reporting Limit

ND

Not Detected at the Method Detection Limit (MDL)

Kuipers & Associates, LLC

Lab Order:

CLIENT:

0906034

Project:

Sample/Filter Weight

DUSTFALL BUCKETS

Lab ID:

0906034-004

Date: 23-Jul-09

Client Sample ID: KA-SP-OPP-4-49035(3-2-09/6

Collection Date: 6/1/2009 10:58:00 AM

6/23/2009

Matrix: SOLID

Analyses	Result	Limit Qualif	ier Units	DF	Date Analyzed
ICP-MS METALS, SOLID SAMPLE	S	SW6020	SW3050E	}	Analyst: SW
Arsenic	66.6	0.870	mg/Kg	1	7/13/2009
Cadmium	2.07	0.058	mg/Kg	1	7/13/2009
Copper	232	0.725	mg/Kg	1	7/13/2009
Lead	59.4	0.116	mg/Kg	1	7/13/2009
Zinc	282	1.74	mg/Kg	1	7/13/2009
FILTER & SAMPLE WEIGHT - FILT	ER ANALYSIS	MISC			Analyst: BO

0.0001

0.0862

Qualifiers:

E Value above quantitation range

j Analyte detected below the Reporting Limit

MDL. Method Detection Limit Н Holding times for preparation or analysis exceeded

Limit Instrument Reporting Limit ND

Not Detected at the Method Detection Limit (MDL)

Date: 23-Jul-09

CLIENT:

Kuipers & Associates, LLC

Lab Order:

0906034

DUSTFALL BUCKETS

Project: Lab ID:

0906034-005

Client Sample ID: KA-SP-WS-4-49104(3-2-09/6-

Collection Date: 6/1/2009 12:25:00 PM

Matrix: SOLID

Analyses	Result	Limit Qualif	ier Units	DF	Date Analyzed
ICP-MS METALS, SOLID SAMPLE	S	SW6020	SW3050B		Analyst: SW
Arsenic	12.1	1.31	mg/Kg	1	7/13/2009
Cadmium	0.951	0.087	mg/Kg	1	7/13/2009
Copper	62.4	1.09	mg/Kg	1	7/13/2009
Lead	21.0	0.174	mg/Kg	1	7/13/2009
Zinc	124	2.61	mg/Kg	1	7/13/2009
FILTER & SAMPLE WEIGHT - FILT	ER ANALYSIS	MISC			Analyst: BO
Sample/Filter Weight	0.0574	0.0001	g	1	6/23/2009

Review

Qua	alif	iers

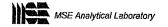
Value above quantitation range

J Analyte detected below the Reporting Limit

MDL Method Detection Limit

H Holding times for preparation or analysis exceeded

Limit Instrument Reporting Limit


Not Detected at the Method Detection Limit (MDL)

P.O. Box 4078 200 Technology Way Butte, MT 59701 Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

ND

Page 5 of 8

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 23-Jul-09 Report Date: 23-Jul-09

QA/QC SUMMARY REPORT

Client:

Kuipers & Associates, LLC

Work Order:

0906034

Project:

DUSTFALL BUCKETS

BatchID:

2488

Analyte	Result	RL	Units	Spike Lvl	% Rec	Low Limit	High Limit	RPD	RPD Limit Qual
Sample ID: 2488-PB			Method:	SW6020A	Batch ID:	2488	Anai	ysis Date	: 7/13/2009
Arsenic	ND	1.50	μg/L						
Cadmium	ND	0.100	μg/L						
Copper	ND	1.25	μg/L						
Lead	0.086	0.200	μg/L						
Zinc	ND	3.00	µg/L						
Sample ID: WET CHEN	BLANK		Method:	SW6020A	Batch ID:	2488	Anal	ysis Date	: 7/13/2009
Arsenic	ND	1.50	μg/L						
Cadmium	0.046	0.100	µg/L						
Copper	0.812	1.25	μg/L						
Lead	0.182	0.200	μg/L						
Zinc	6.47	3.00	µg/L						
Sample ID: 2488-LCS			Method:	SW6020A	Batch ID:	2488	Anal	ysis Date	: 7/13/2009
Arsenic	19.2	1.50	μg/L	20.00	95.9	80	120		
Cadmium	1.96	0.100	μg/L	2.000	98.2	80	120		
Copper	22.8	1.25	μg/L	20.00	114	80	120		
Lead	21.0	0.200	μg/L	20.00	105	80	120		
Zinc	365	3.00	μg/L	400.0	91.2	80	120		
Sample ID: 0906034-00	2AMS		Method:	SW6020A	Batch ID:	2488	Anal	ysis Date	: 7/13/2009
Arsenic	4.57	0.124	μg/L	1.652	97.1	70	130		
Cadmium	2.35	0.008	μg/L	2.065	99.5	70	130		
Copper	22.2	0.103	μg/L	10.32	107	70	130		
Lead	3.91	0.017	μg/L	0.8260	93.9	70	130		
Zinc	45.9	0.248	μg/L	20.65	103	70	130		
Sample ID: 0906034-00	2AMSD		Method:	SW6020A	Batch ID:	2488	Anal	ysis Date	: 7/13/2009
Arsenic	4.55	0.124	μg/L	1.652	95.8	70	130	0.444	20
Cadmium	2.37	800,0	μg/L	2.065	100	70	130	0.826	20
Copper	21.5	0.103	μg/L	10.32	101	70	130	2.91	20
Lead	3.83	0.017	μg/L	0.8260	84.1	70	130	2.10	20
Zinc	45.2	0,248	μg/L	20.65	100	70	130	1.59	20

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 23-Jul-09 Report Date: 23-Jul-09

QA/QC SUMMARY REPORT

Client:

Kuipers & Associates, LLC

Work Order:

0906034 2517

Project:

DUSTFALL BUCKETS

BatchID:

Analyte	Result	RL	Units	Spike Lvl	% Rec	Low Limit	High Limit RPD 1	RPD Limit Qualifi
Sample ID: 2517-	PB-UNFILTERED		Method:	SW6020	Batch ID:	2517	Analysis Date	: 7/13/2009
Arsenic	ND	0.150	mg/Kg					
Cadmium	ND	0.010	mg/Kg					
Copper	ND	0.125	mg/Kg					
Lead	ND	0.020	mg/Kg					
Zinc	ND	0.300	mg/Kg					
Sample ID: 2517-	PB-FILTERED		Method:	SW6020	Batch ID:	2517	Analysis Date	: 7/13/2009
Arsenic	ND	0.150	mg/Kg					
Cadmium	ND	0.010	mg/Kg					
Copper	ND	0.125	mg/Kg					
Lead	ND	0.020	mg/Kg					•
Zinc	ND	0.300	mg/Kg					
Sample ID: 2517-	LCS		Method:	SW6020	Batch ID:	2517	Analysis Date	: 7/13/2009
Arsenic	125	0.147	mg/Kg	129.8	96.1	80	120	
Cadmium	56.1	0.010	mg/Kg	55.65	101	80	120	
Copper	60.4	0.123	mg/Kg	60.08	101	80	120	
Lead	322	0.020	mg/Kg	308.8	104	80	120	
Zinc	241	0.295	mg/Kg	247.8	97.2	80	120	
Sample ID: 09060	34-005AMS		Method:	SW6020	Batch ID:	2517	Analysis Date	: 7/13/2009
Arsenic	29.4	1.31	mg/Kg	17.42	99.4	75	125	
Cadmium	22.6	0.087	mg/Kg	21.78	99.3	75	125	
Copper	178	1.09	mg/Kg	108.9	106	75	125	
Lead	29.3	0.174	mg/Kg	8.711	94.3	75	125	
Zinc	350	2.61	mg/Kg	217.8	104	75	125	
Sample ID: 09060	34-005AMSD		Method:	SW6020	Batch ID:	2517	Analysis Date	: 7/13/2009
Arsenic	28.8	1.31	mg/Kg	17.42	95.7	75	125 2.21	20
Cadmium	22.2	0.087	mg/Kg	21.78	97.5	75	125 1.78	20
Copper	173	1.09	mg/Kg	108.9	102	75	125 2.63	20
Lead	28.4	0.174	mg/Kg	8.711	84.1	75	125 3.10	20
Zinc	345	2.61	mg/Kg	217.8	101	75	125 1.69	20

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 23-Jul-09 Report Date: 23-Jul-09

QA/QC SUMMARY REPORT

Client:

Kuipers & Associates, LLC

Work Order:

0906034

Project:

DUSTFALL BUCKETS

BatchID:

R9860

Analyte	Result	RL	Units	Spike Lvl	% Rec	Low Limit	High Limit RPD	RPD Limit Qualifier
Sample ID: LCS VI	VC 2097 810	10	Method: mg/L	A2540C 833.0	Batch ID: 97.2	R9860 80	Analysis Date	: 6/8/2009
Sample ID: PB TDS	ND	10	Method: mg/L	A2540C	Batch ID:	R9860	Analysis Date	: 6/8/2009

SW

MSE Technology Applications, Inc.
· · · · · · · · · · · · · · · · · · ·
Laboratory Services

CHAIN OF CUSTODY

MSE WORK ORDER# 0906034

Endoratory Services							l	
Company Name: Kuipers +Associo	etres	roject Manage	er: eHecl	<u>_</u>	ZAI	VALYSIŞ RE	EQUESTED	REMARKS
Address:	F	roject Name a	and Number:		2/9	12		Turnaround Time (TAT) / Reporting
City: State:	2.5.	mail Address: Sheck@	rfucivi	enet	a	11.4		Standard *All rushPhone
Phone: 498-4199		Purchase Orde			10,7	747		Next Day*
Fax: NA	5	Sampler Name	and Phone #:		1,0	TOTAL PARTKULA		Other* priorEmail approval
SAMPLEID	LAB II)	DATE	TIME	45			
KA-DF-0PP-008	0906034-	001A	6-1-09	1058	X	X		Noclohol this time.
(4-5-09 to 6-1-09)								Please essure prep blank
KA-DF-WS-006		302A	6-1-09	1225	X	X		for DF jars carried throughout
(45-09 to 6-1-09)								Contact Steve Heck
KA-DF-FB-005		203A	6-1-09	1225	X	X		when ready to weigh
(6-1-09)								Cossette fitters
15A-5P-OPP-4-490	35.	APOC	6-1-09	1058	X			Inspection Checklist
(3-2-09 to 6-1-09)								Received Intact?
KA-SP-WS-4-491	04 / C	05A	6-1-09	1225	X			Labels & Chains Agree?
(3-2-09 to 6-1-09)		·	<u> </u>					Containers Sealed?
								Cooler Sealed? // WAY N
								Delivery Method: hd no Coolec /ice
RELINQUISHED BY (Signature)	_6-1-09 /53	F RECEIVE	D BY (Signature)	nd	6/	775,9	1530	Temperature (°C):
PRINTED NAME	COMPANY	PRINTED	NAME .		COMF	ANY		Preservative:
Stewn R Heck RELINQUISHED BY (Signature)	Blackteil Go		D BY (Signature)	rd		MSE - T	TIME	
		-	(Olymandis)			UNIE		Date & Time: <u>Co/1/Q9 1530</u>
PRINTED NAME	COMPANY	PRINTED	NAME		COMF	ANY		Inspected By:
RELINQUISHED BY (Signature)	DATE TIM	E RECEIVE	D BY (Signature)			DATE	TIME	MSE LABORATORY SERVICES 200 Technology Way, P.O. Box 4078
PRINTED NAME	COMPANY	PRINTED	NAME		СОМР	'ANY		Butte, MT 59701 PH: (406) 494-7334 / FAX: (406) 494-7128 labinfo@mse-ta.com

Corrective Action

Sample Receipt Checklist

Client Name KUIPERS&ASSOC			Date and Ti	ne Received:	6/3/2009 1:20:26 PM
Work Order Number 0906034	RcptNo: 1		Received	by SW	
COC_ID: Cooler Checklist completed by Signature	Date Open 6 5	2-09	Reviewed	by Initials	J Cold M Date
Matrix:	Carrier name:	Hand-Deliv	vered		
Shipping container/cooler in good condition?		Yes	No l	Not Present	M
Custody seals intact on shippping container/c	ooler?	Yes	Noll	Not Present	
Custody seals intact on sample bottles?		Yes	Noll	Not Present	/
Chain of custody present?		Yes 🗸	No l. l		
Chain of custody signed when relinquished ar	nd received?	Yes 🗸	No		
Chain of custody agrees with sample labels?		Yes 🗸	No		
Samples in proper container/bottle?		Yes 🗸	No l		
Sample containers intact?		Yes 🔽	No []		
Sufficient sample volume for indicated test?		Yes 🔽	No 🗀		
All samples received within holding time?		Yes 🔽	No []	÷	
Container/Temp Blank temperature in complia	nce?	Yes 🗌	No 🗸		
Water - VOA vials have zero headspace?	No VOA vials subm	nitted 🔽	Yes		
Water - pH acceptable upon receipt?		Yes	No 🛄	Blank	6-2309
Samples evaporal for T-S by KW Any No and/or NA (not applicable) response m	, Adjusted?	omments sec	Checked by	(De)	6.000
Client contacted:	Date contacted:		Pe	rson contacted	
Contacted by:	Regarding:				
Comments: NO COOLER/ICE, TEMP=	=15.50C.				

Monday, August 10, 2009

Steve Heck Blacktail Consulting P.O. Box 4692 Butte, MT 59702

RE: BLACKTAIL CONSULTING

Work Order: 0907195

Dear Steve Heck:

MSE Lab Services received 9 sample(s) on 7/24/2009 for the analyses presented in the following report.

Please find enclosed analytical results for the sample(s) received at the MSE Laboratory.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Marcee Cameron

Laboratory Director/ Chemist

Marce Cameron

406-494-7371

Enclosure

P.O. Box 4078 200 Technology Way Butte, MT 59701 Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 10-Aug-09

CLIENT: Lab Order: Blacktail Consulting

Project:

0907195

BLACKTAIL CONSULTING

Lab ID:

0907195-007

Client Sample ID: KA-SP-OPP-4-49151

Collection Date: 7/10/2009 2:45:00 PM

Matrix: SOLID

Analyses	Result	Limit Qualifi	er Units	DF	Date Analyzed
ICP-MS METALS, SOLID SAM	PLES	SW6020	SW3050B		Analyst: SW
Arsenic	29.7	1.21	mg/Kg	1	8/2/2009
Cadmium	0.854	0.081	mg/Kg	1	8/2/2009
Copper	94.2	1.01	mg/Kg	1	8/2/2009
Lead	24.5	0.162	mg/Kg	1	8/2/2009
Zinc	114	2.43	mg/Kg	1	8/2/2009
FILTER & SAMPLE WEIGHT -	FILTER ANALYSIS	MISC			Analyst: BO
Sample/Filter Weight	0.0618	0.0001	g	1	7/30/2009

Review

Qualifiers:

Value above quantitation range

Analyte detected below the Reporting Limit

MDL Method Detection Limit

H Holding times for preparation or analysis exceeded

Limit Instrument Reporting Limit

Not Detected at the Method Detection Limit (MDL)

Ε

J

P.O. Box 4078 200 Technology Way Butte, MT 59701 Lab: 406-494-7334

ND

Fax: 406-494-7230 labinfo@mse-ta.com

CLIENT:

Blacktail Consulting

Lab Order:

0907195

Project: Lab ID: **BLACKTAIL CONSULTING**

0907195-008

Date: 10-Aug-09

Client Sample ID: KA-SP-WS-4-49383

Collection Date: 7/10/2009 12:13:00 PM

Matrix: SOLID

Analyses	Result	Limit	Qualific	er Units	DF	Date Analyzed
ICP-MS METALS, SOLID SAMPLE	s	SW6	S020	SW3050B		Analyst: SW
Arsenic	0.941	1.49	J	mg/Kg	1	8/2/2009
Cadmium	0.504	0.100		mg/Kg	1	8/2/2009
Copper	7.18	1.25		mg/Kg	1	8/2/2009
Lead	3.11	0.199		mg/Kg	1	8/2/2009
Zinc	33.8	2.99		mg/Kg	1	8/2/2009
FILTER & SAMPLE WEIGHT - FILT	ER ANALYSIS	MIS	sc			Analyst: BO
Sample/Filter Weight	0.0502	0.0001		g	1	7/30/2009

Review

Qualifiers:

Value above quantitation range

Analyte detected below the Reporting Limit

Method Detection Limit

H Holding times for preparation or analysis exceeded

Limit Instrument Reporting Limit

Not Detected at the Method Detection Limit (MDL)

Ε

MDL

P.O. Box 4078

200 Technology Way Butte, MT 59701 Lab: 406-494-7334

Fax: 406-494-7230

labinfo@mse-ta.com

ND

Page 8 of 10

CLIENT:

Blacktail Consulting

BLACKTAIL CONSULTING

Lab Order:

0907195

Project: Lab ID:

0907195-009

Date: 10-Aug-09

Client Sample ID: KA-SP-FB-4-49308

Collection Date: 7/22/2009 11:15:00 AM

Matrix: SOLID

Analyses	Result	Limit	Qualifi	er Units	DF	Date Analyzed
ICP-MS METALS, SOLID SAMPLI	ES	SW	6020	SW3050B		Analyst: SW
Arsenic	ND	1.60		mg/Kg	1	8/2/2009
Cadmium	ND	0.107		mg/Kg	1	8/2/2009
Copper	0.456	1.33	J	mg/Kg	1	8/2/2009
Lead	0.158	0.213	J	mg/Kg	1	8/2/2009
Zinc	22.1	3.20		mg/Kg	1	8/2/2009
FILTER & SAMPLE WEIGHT - FIL	TER ANALYSIS	MI	SC			Analyst: BO
Sample/Filter Weight	0.0469	0.0001		g	1	7/30/2009

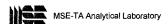
Qualifiers:

Е Value above quantitation range

Analyte detected below the Reporting Limit

Limit Instrument Reporting Limit

MDL


Method Detection Limit

ND

Н

Not Detected at the Method Detection Limit (MDL)

Holding times for preparation or analysis exceeded

Butte, MT 59701

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Page 9 of 10

Lab: 406-494-7334 Fax: 406-494-7230 labinfo@mse-ta.com

Date: 10-Aug-09
Report Date: 10-Aug-09

QA/QC SUMMARY REPORT

Client:

Blacktail Consulting

Work Order:

0907195

2571

Project:

BLACKTAIL CONSULTING

BatchID:

Analyte	Result	RL	Units	Spike Lvl	% Rec	Low Limit	High Limit RPD F	RPD Limit Q	ualifier
Sample ID: 2571 -	-PB-UNFILTERED		Method:	SW6020	Batch ID:	2571	Analysis Date	8/2/2009	
Arsenic	ND	0.150	mg/Kg						
Cadmium	ND	0.010	mg/Kg						
Copper	0.062	0.125	mg/Kg						J
Lead	ND	0.020	mg/Kg						
Zinc	ND	0.300	mg/Kg						
Sample ID: 2571	-PB-FILTERED		Method:	SW6020	Batch ID:	2571	Analysis Date	8/2/2009	
Arsenic	ND	0.150	mg/Kg						
Cadmium	ND	0.010	mg/Kg						
Copper	ND	0.125	mg/Kg						
Lead	0.007	0.020	mg/Kg						J
Zinc	ND	0.300	mg/Kg						
Sample ID: 2571	-LCS		Method:	SW6020	Batch ID:	2571	Analysis Date	8/2/2009	
Arsenic	59.1	0.149	mg/Kg	70.22	84.1	80	120		
Cadmium	189	0.010	mg/Kg	213.8	88.3	80	120		
Copper	153	0.124	mg/Kg	177.0	86.4	80	120		
Lead	76.0	0.020	mg/Kg	84.44	90.1	80	120		
Zinc	606	0.298	mg/Kg	652.5	92.9	80	120		

MSE Technology Applications, Inc.
Laboratory Services

CHAIN OF CUSTODY

MSE WORK ORDER# 0907195

						~ ***						
Company Name: Blacktail Consult		e Heck		_	ANALYS	IS REC	QUES	TED	REMARKS			
Address: PO BOX 4692		Project Name and Number:			y 24	ghts				Turnaround Time (TAT) / Reporting		
Butte MT 59702		Email Address: Sheckerfuave net			(CrPb)	Weig				Standard *All rushPhone		
Phone: 406-498-4199					2/8					Next Day*		
Fax:			ame and Phone #: く 498-4		1	万十				Other*		
SAMPLE ID	LAE	3 ID	DATE	TIME	As							
ANC-0709-0001 DR	0907195	·001A	7-22-09	1044	X	×						
ANC-0709-0001 L		002A	7-22-09	1017	X	X						
ANC-0709-0001M		023A	7-22-09	1034	X	X						
ANG-0709-0001 B		0049	+ 7-22-09	1058	X	X						
ANG-0709-0002 B		0051	7-22-09	1104	X	X						
ANC-0709-0003B	•	0061	A 7-22-09	1110	X	X				m n		
										Inspection Checklist		
KA-SP-OPP-4-4915	/	007A	7-10-09	1445	·X	X				Received Intact?		
KA-SP-WS-4-49383		008A	7-10-09	1213	X	X				Labels & Chains Agree? (Y) N		
KA-SP-FB-4-49308		009A	7-22-09	1115	X	X				Containers Sealed?		
										Cooler Sealed? Y N		
										Delivery Method: HID NO CodeVIIC		
RICLINQUISHED BY (Signature)	7-23-09 16	IME REC	CEIVED BY (Signature)	ulion	7	DATE 23	9	16	TIME O	Temperature (°C): Na IN Box		
STEVEN R. Heck	COMPANY Blacktowil (PRINTED NAME			COMPANY NSC				Preservative: NA			
RELINQUISHED BY (Signature)	DATE 1	TIME RECEIVED BY (Signature)			DATE TIME				Date & Time: 7/23			
PRINTED NAME	COMPANY	PRINTED NAME		CON	COMPANY			Inspected By:				
RELINQUISHED BY (Signature)	DATE	DATE TIME RECEIVED BY (Signature)		· · · · · · · · · · · · · · · · · · ·		DATE TIME			IME	MSE LABORATORY SERVICES 200 Technology Way, P.O. Box 4078		
PRINTED NAME	COMPANY	PRINTED NAME			CON	DMPANY				Butte, MT 59701 PH: (406) 494-7334 / FAX: (406) 494-7128		

Corrective Action

Client Name BLACKTAIL_CNSLT

Sample Receipt Checklist

Date and Time Received: 7/24/2009 7:59:57 AM

Work Order Number 0907195	RcptNo: 1		Received by	MC		
COC_ID: CoolerID: Checklist completed by Signature	/ 3 .	7-24-09	Reviewed by _	Initials)	71251 C
Matrix:	Carrier name:	Hand-Delivered				
Shipping container/cooler in good condition?		Yes	No 🗌 No	ot Present		
Custody seals intact on shippping container/cool	er?	Yes	No T No	t Present	/	
Custody seals intact on sample bottles?		Yes []	No No	t Present		
Chain of custody present?		Yes 🗸	No []			
Chain of custody signed when relinquished and	received?	Yes 🔽	No 📋			
Chain of custody agrees with sample labels?		Yes 🗸	No 🗔			
Samples in proper container/bottle?		Yes 🗸	No 🗌			
Sample containers intact?		Yes 🗸	No 🗔			
Sufficient sample volume for indicated test?		Yes 🗸	No 🗌			
All samples received within holding time?		Yes 🗸	No 🗀			
Container/Temp Blank temperature in compliance	e?	Yes 🗌	No 🗸			
Water - VOA vials have zero headspace?	No VOA vials subm	itted 🗹	Yes [No 🗔		
Water - pH acceptable upon receipt? \mathcal{NQ}	_	Yes	No 🗆	Blank		
filters	Adjusted?	Chec	ked by	00 7°	29-08	7
Any No and/or NA (not applicable) response mus	st be detailed in the co	mments section be	el			
Client contacted:	Date contacted:		Person	contacted		
Contacted by:	Regarding:					
Comments: REC'D IN BOX, NO ICE. TE	MP=N/A(SOLID)					